СПЕЧЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ Российский патент 2006 года по МПК C22C1/04 H01H1/02 

Описание патента на изобретение RU2281341C2

Изобретение относится к порошковой металлургии, в частности к спеченным композиционным псевдосплавам на основе некарбидообразующих металлов, содержащим антифрикционный наполнитель. Указанные материалы находят применение для изготовления токопроводящих узлов трения, коммутирующих электрических контактов и, в частности, токосъемных узлов электротранспорта.

При контакте токосъемных узлов и токоведущих шин-троллеев возникает сложный электротриботехнический процесс, приводящий к износу обоих контактирующих элементов. При этом явления механического и электрического износа взаимосвязаны. К материалам, используемым для изготовления токосъемных узлов, предъявляются определенные требования. Основными из них являются требования высокой электропроводности и высоких антифрикционных характеристик. Подобные материалы могут быть получены технологией порошковой металлургии.

Наиболее распространенным псевдосплавом является псевдосплав меди с наполнителем, который содержит 0,25-10 мас.%, чаще 3,0-5,0% графита. Графит легко расслаивается на чешуйки (пластинки) или блоки пластинок, которые располагаются на рабочих поверхностях контактов и препятствуют схватыванию этих поверхностей при скольжении или свариванию их при прохождении электрического тока [Шулепов С.В. Физика углеграфитовых материалов. М.: Металлургия, 1972]. Графит не взаимодействует с металлом, составляющим непрерывную матрицу псевдосплава, в которой должны равномерно распределяться мелкие включения наполнителя.

Однако эти композиционные материалы обладают недостаточной для токосъемных элементов износостойкостью и механической прочностью, а также низкой дугостойкостью.

Известен композиционный материал марки КМКБ10 (ТУ 16 538.272-75), представляющий собой спеченный псевдосплав, содержащий медно-никелевую матрицу и графит. Этот материал обладает более высокой электроэрозионной стойкостью и износостойкостью, чем материал, включающий медь и графит. Тем не менее износостойкость этого материала недостаточна для продолжительной эксплуатации токопроводящих узлов трения, изготовленных из него, а его электропроводность ниже, чем у сплавов типа бронзы или псевдосплавов на основе меди.

Наиболее близким по совокупности существенных признаков к заявляемому материалу является спеченный композиционный материал, включающий металлическую матрицу, графит и углеродные наноструктуры [патент РФ № 2087575, М.кл6 С 22 С 1/09, Н 01 Н 1/02, опубл. 20.08.97]. В качестве металлической матрицы известный материал содержит некарбидообразующие металлы, такие как медь или смесь меди с оловом, в соотношении 18:1. Композиция также включает 1-20 мас.% (в примерах 3-5 мас.%) графита и 0,1-20 мас.% (в примерах 1-2 мас.%) смеси углеродных нановолокон и/или фуллеренов и графита. Процент наноструктур в смеси с графитом не указан.

Указанная композиция имеет более высокую твердость, чем композиция, не содержащая углеродных наноструктур, и примерно то же значение удельного электрического сопротивления.

Однако известно [Белоусов В.П. и др. Оптич. журнал, 1997, 64, № 12, с.3-37], что фуллерены не выдерживают термообработки при температуре выше 450°С. В прототипе спекание (как это и требуется в порошковой металлургии меди и ее сплавов) производится при температуре 700-1000°С, что неизбежно приведет к деструктурированию фуллеренов. По нашим данным добавление в композицию графита, содержащего указанные наноструктуры, не приводит к повышению износостойкости медно-графитовой композиции.

Технический результат, достигаемый в заявляемом изобретении, состоит в повышении износостойкости как композиции, так и контртела, при сохранении низкого удельного электрического сопротивления композиции.

Указанный технический результат достигается тем, что спеченный композиционный материал, включающий металлическую матрицу из некарбидообразующего металла, графит и углеродные наноструктуры, в качестве последних содержит полиэдральные многослойные углеродные наноструктуры фуллероидного типа с межслоевым расстоянием 0,34-0,36 нм, средним размером частиц 60-200 нм, удельным электрическим сопротивлением не более 2,5×10-4 Ом·м-1 при давлении 120 МПа и дополнительно термореактивную смолу при следующем соотношении компонентов, мас.%:

графит3-10термореактивная смола0,1-2,0полиэдральные многослойныеуглеродные наноструктуры фуллероидного типа0,005-0,2металлическая матрицаостальное

В качестве некарбидообразующего металла металлическая матрица композиции может содержать медь, никель, нержавеющую сталь, а также смеси меди с различными металлами, бронзу различного состава и др.

В качестве термореактивной смолы композиция может содержать эпоксидную смолу, например, такую как эпоксидная диановая смола марки ЭД-20, или фенолформальдегидную смолу, например бакелитовый лак.

Полиэдральные многослойные углеродные наноструктуры фуллероидного типа выделены нами из корки катодного депозита, полученного термическим распылением графитового анода в поле постоянного тока в атмосфере инертного газа, так, как это описано в патенте РФ № 2196731. Полиэдральные многослойные углеродные наноструктуры фуллероидного типа обладают высокой термобароустойчивостью к графитизации (3000°С при давлении 50 Кбар); они выдерживают нагрев до 1000°С, необходимый для спекания композиции.

Композиция содержит также графит, например, марки ГС-3 по ГОСТ 8295-73.

Композиция получена следующим образом.

Смесь медного порошка (ПМС-1, ГОСТ 4960-75) и графита (ГС-3, ГОСТ 8295-73) с добавлением 0,7 мас.% стеарата цинка (смазка и порообразователь) перемешивали в течение двух часов в смесителе типа «пьяная бочка». Из образованной смеси формировали пластины 10×10×80 мм на гидравлическом прессе. Пластины спекали в среде диссоциированного аммиака в камерной электропечи типа ВП-25 при температуре 900-1000°С в течение 2 часов.

К эпоксидной смоле марки ЭД-20 добавляли порошок полиэдральных многослойных углеродных наноструктур. После тщательного перемешивания к смеси прибавляли отвердитель, опускали в них пластины и пропитывали их эпоксидной смолой с отвердителем и наноструктурами под действием ультразвука с частотой 22 КГц в течение 50 мин.

Пропитанные пластины калиброваны путем холодной допрессовки в пресс-форме под давлением 100-200 МПа.

Определяли удельное электрическое сопротивление пластины по ГОСТ 7229-76, твердость по Бринелю (ГОСТ 9012-50) и износостойкость (по разработанной заявителем методике) как потерю веса образца и потерю веса контртела - ролика из бронзы - при прокатке контртела по образцу.

Состав композиционного материала и его физико-механические свойства приведены в таблице.

Таблица
Состав композиций и их физико-механические свойства.
№ п/пСодержание компонентов, мас.%Удельное электрическое сопротивление мкОм·м-1Твердость НВ МПаИзнос, мгобразцаКонтртелаграфитТермореактивная смолананоструктурыоснова1320,005медь0,04755013,70,192100,10,2медь0,0294109,80,17351,00,1медь0,04034015,50,1551,0-медь0,04610013,80,585-0,1медь0,041449133,0задир5--медь0,075256470,0задир7320,005никель0,1705027,50,218100,10,2нерж. сталь0,1285707,30,353--никель0,180450164,0задир10к10--нерж. сталь0,130430158,0задир

1. В примере 5к наноструктуры вводили в композицию в процессе смешения порошка меди с графитом.

2. Нержавеющая сталь марки 410L (Швеция), дисперсность порошка менее 150 мкм.

Как видно из приведенных данных, заявленный композиционный материал имеет низкое удельное электрическое сопротивление, низкий износ как образца, так и контртела при триботехнических испытаниях и достаточно высокую твердость. Исключение из состава композиции смолы или полиэдральных многослойных углеродных наноструктур фуллероидного типа приводит к увеличению электрического сопротивления и резкому увеличению износа как образца, так и контртела и к снижению твердости.

Похожие патенты RU2281341C2

название год авторы номер документа
СПЕЧЁННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2016
  • Абинов Анатолий Георгиевич
  • Калинин Юрий Григорьевич
  • Краутман Константин Рудольфович
  • Парсегов Сергей Владимирович
  • Пономарёв Андрей Николаевич
  • Шахторин Святослав Константинович
RU2635059C2
СПЕЧЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2013
  • Абинов Анатолий Георгиевич
  • Войнов Кирилл Николаевич
  • Калинин Юрий Григорьевич
  • Краутман Константин Рудольфович
  • Парсегов Сергей Владимирович
  • Пономарёв Андрей Николаевич
RU2543121C2
АНТИФРИКЦИОННАЯ КОМПОЗИЦИЯ 2000
  • Рыбин В.В.
  • Пономарев А.Н.
  • Николаев Г.И.
  • Абозин И.Ю.
  • Бахарева В.Е.
  • Малинок М.В.
  • Никитин В.А.
  • Петров В.М.
RU2188834C2
КОМПОЗИТНАЯ АРМАТУРА "АСТРОФЛЕКС" (ВАРИАНТЫ) 2009
  • Пономарев Андрей Николаевич
  • Белоглазов Александр Павлович
RU2405091C1
МАТЕРИАЛ ДЛЯ ТОКОПРОВОДЯЩИХ КОНТАКТНЫХ ИЗДЕЛИЙ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ИЗДЕЛИЕ 1998
  • Бучнев Л.М.
  • Гершман И.С.
  • Зинченко С.А.
  • Мищенко В.Ю.
  • Николин М.И.
RU2150444C1
АНТИФРИКЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2002
  • Бланк Е.Д.
  • Виноградов С.Е.
  • Герцык М.А.
  • Никитин В.А.
  • Орыщенко А.С.
  • Петров В.М.
  • Пономарев А.Н.
  • Рыбин В.В.
  • Слепнев В.Н.
  • Чистяков В.В.
  • Шекалов В.И.
RU2237685C2
СПЕЧЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 1994
  • Оганян Р.А.
  • Жариков О.В.
  • Оганян Я.Н.
  • Осипьян Ю.А.
RU2087575C1
АНТИФРИКЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2008
  • Гинзбург Борис Моисеевич
  • Ляшков Александр Иванович
  • Михайлов Борис Иванович
  • Прокофьев Владимир Михайлович
  • Точильников Давид Гершевич
  • Соболев Николай Захарович
  • Оленин Юрий Валентинович
  • Савицкий Александр Викторович
RU2376327C1
ИНСТРУМЕНТ ДЛЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ПОВЕРХНОСТИ ДЕТАЛЕЙ 2007
  • Пономарев Андрей Николаевич
  • Меза Ольга
RU2354526C2
ПРОВОЛОКА С КОМПОЗИЦИОННЫМ СЕРДЕЧНИКОМ 2009
  • Стасюлевич Фердинанд Иренеушевич
  • Андреев Андрей Витальевич
  • Назаренко Владимир Анатольевич
RU2387035C1

Реферат патента 2006 года СПЕЧЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Изобретение относится к порошковой металлургии, а именно к спеченным композиционным материалам на основе некарбидообразующих металлов, содержащим антифрикционный накопитель. Данные материалы используются для изготовления токопроводящих узлов трения, коммутирующих электрических контактов, в частности токосъемных узлов электротранспорта. Спеченный композиционный материал содержит металлическую матрицу из некарбидообразующего металла, графит 3-10 мас.%, термореактивную смолу 0,1-2,0 мас.%, полиэдральные многослойные углеродные наноструктуры фуллероидного типа 0,005-0,2 мас.%. Полиэдральные многослойные углеродные наноструктуры фуллероидного типа имеют межслоевое расстояние 0,34-0,36 нм, средний размер частиц 60-200 нм и удельное электрическое сопротивление не более 2,5×10-4 Ом·м-1 при давлении 120 МПа. В качестве термореактивной смолы материал содержит эпоксидную или фенолформальдегидную смолу. В качестве металлической матрицы материал содержит медь, никель или нержавеющую сталь. Технический результат - повышение износостойкости как композиции, так и контртела при сохранении низкого удельного электрического сопротивления композиционного материала. 5 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 281 341 C2

1. Спеченный композиционный материал, включающий металлическую матрицу из некарбидообразующего металла, графит и углеродные наноструктуры, отличающийся тем, что в качестве углеродных наноструктур материал содержит полиэдральные многослойные углеродные наноструктуры фуллероидного типа с межслоевым расстоянием 0,34-0,36 нм, средним размером частиц 60-200 нм, удельным электрическим сопротивлением не более 2,5·10-4 Ом·м-1 при давлении 120 МПа и дополнительно термореактивную смолу при следующем соотношении компонентов, мас.%:

Графит3-10Термореактивная смола0,1-2,0Полиэдральные многослойные углеродные наноструктуры фуллероидного типа0,005-0,2Металлическая матрицаОстальное

2. Спеченный композиционный материал по п.1, отличающийся тем, что в качестве некарбидообразующего металла металлическая матрица содержит медь.3. Спеченный композиционный материал по п.1, отличающийся тем, что в качестве некарбидообразующего металла металлическая матрица содержит никель.4. Спеченный композиционный материал по п.1, отличающийся тем, что в качестве некарбидообразующего металла металлическая матрица содержит нержавеющую сталь.5. Спеченный композиционный материал по п.1, отличающийся тем, что в качестве термореактивной смолы он содержит эпоксидную смолу.6. Спеченный композиционный материал по п.1, отличающийся тем, что в качестве термореактивной смолы он содержит фенолформальдегидную смолу.

Документы, цитированные в отчете о поиске Патент 2006 года RU2281341C2

СПЕЧЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 1994
  • Оганян Р.А.
  • Жариков О.В.
  • Оганян Я.Н.
  • Осипьян Ю.А.
RU2087575C1
АНТИФРИКЦИОННАЯ КОМПОЗИЦИЯ 2000
  • Рыбин В.В.
  • Пономарев А.Н.
  • Николаев Г.И.
  • Абозин И.Ю.
  • Бахарева В.Е.
  • Малинок М.В.
  • Никитин В.А.
  • Петров В.М.
RU2188834C2
ПОЛИЭДРАЛЬНЫЕ МНОГОСЛОЙНЫЕ УГЛЕРОДНЫЕ НАНОСТРУКТУРЫ ФУЛЛЕРОИДНОГО ТИПА 2000
  • Пономарев А.Н.
  • Никитин В.А.
RU2196731C2
JP 10168502 A, 23.06.1998
Способ обеззоливания оссеина в производстве желатины 1977
  • Устинова Любовь Николаевна
  • Пароник Семен Израилевич
  • Сагирова Майруза Хайрутдиновна
  • Шиморина Анна Федоровна
SU679610A1

RU 2 281 341 C2

Авторы

Пономарев Андрей Николаевич

Никитин Владимир Александрович

Паутов Алексей Иванович

Калинин Юрий Григорьевич

Заборский Борис Николаевич

Даты

2006-08-10Публикация

2003-07-23Подача