Изобретение относится к прочностным испытаниям, а именно к устройствам для определения прочности и пластичности металлов и сплавов в условиях объемного напряженного состояния при динамическом нагружении.
Известно приспособление для испытаний на сжатие /1/, содержащее корпус, пуансон с гайкой, основание и деформирующие плиты, между которыми располагают испытуемый на сжатие цилиндрический образец. Для направления осевого движения пуансона его устанавливают во втулке с сепаратором (блок с шариковыми направляющими), а деформирующее усилие передают на пуансон через накладку.
Недостатком данного устройства является то, что при испытаниях на сжатие оно не обеспечивает подпора боковой поверхности осаживаемого образца и не позволяет моделировать различные условия его объемного напряженного состояния. Кроме того, рекомендуемой методикой проведения испытаний на данном устройстве ограничивается скорость относительной деформации испытуемого образца до 0,001 с-1, а испытательная машина должна быть оснащена преобразователями силы (на базе тензометров) и перемещений с самопишущим прибором.
Изобретение направлено на повышение точности измерений прочностных и пластических свойств металлов и сплавов, деформируемых при динамических нагрузках в условиях объемного напряженного состояния, а также на упрощение процесса регистрации результатов испытаний.
Это достигается тем, что в корпусе выполнена ступенчатая цилиндрическая проточка, нижний торец которой образует дополнительную наковальню, верхний торец ступенчатого цилиндрического пуансона установлен в проточке корпуса с возможностью осевого перемещения и совместно с цилиндрической проточкой образует две сообщающиеся между собой камеры, заполненные текучей средой и герметизируемые бойком в процессе нагружения, а нижний торец ступенчатого пуансона связан со свободно осаживаемым цилиндрическим образцом.
На чертеже представлена конструктивная схема устройства.
Устройство содержит корпус 1, в котором с возможностью осевого перемещения установлен ступенчатый пуансон 2. Между ступенчатым торцом пуансона и кольцевой проточкой в корпусе, выполняющей роль наковальни, располагают испытуемые на сжатие цилиндрические образцы 3, а между свободным нижним торцом пуансона 2 и нижней наковальней корпуса 1 - дополнительный осаживаемый цилиндрический образец 4, изготовленный из материала, имеющего при конкретных температурно-скоростных условиях нагружения линейную зависимость между удельной энергией деформирования и остаточной логарифмической степенью деформации (например, из меди Ml или стали 45). Верхний и ступенчатый торцы пуансона 2 образуют с корпусом 1 герметизируемую в процессе нагружения испытуемых образцов 3 камеру 5, предварительно заполняемую текучей средой (водой, минеральным маслом и т.п.). Для исключения утечек жидкости из камеры 5 боковая поверхность пуансона 2 снабжена эластичным уплотнением 6, а для выхода воздуха из полости, образуемой свободным нижним торцем пуансона 2 и нижней наковальней корпуса 1, в корпусе выполнены проточки 7. Полная герметизация камеры 5 достигается в процессе нагружения осаживаемых образцов 3 введением в осевое отверстие корпуса 1 торца бойка 8, которому с помощью индивидуального привода (например, порохового копра, высокоскоростного молота и т.п.) сообщают заданную начальную скорость перемещения. Для снижения влияния сил контактного трения на напряженное состояние испытуемых на сжатие образцов 3 на их торцах в соответствии с известными требованиями /1/ выполняют проточки 9, которые заполняют густой смазкой (например, парафином и т.п.).
Устройство работает следующим образом.
Испытуемые на сжатие цилиндрические образцы 3 с торцевыми проточками 9, заполненными густой смазкой, после предварительного измерения их геометрических размеров (hОИ, DОИ) устанавливают на кольцевую наковальню в корпусе 1. Пуансон 2 его нижним ступенчатым торцом опирают на верхние торцы испытуемых на сжатие образцов 3, а нижним свободным торцом - на дополнительный свободно осаживаемый цилиндрический образец 4 с предварительно измеренными геометрическими размерами (hO КР, DО КР), который устанавливают на нижнюю наковальню корпуса 1. Камеру 5, образуемую верхним и ступенчатым торцами пуансона 2 с корпусом 1, заполняют текучей средой. При помощи индивидуального привода (не показан) разгоняют боек 8 до заданной начальной скорости, регистрируют ее, вводят нижний торец бойка во взаимодействие со свободной поверхностью текучей среды, заполняющей камеру 5, и регистрируют величину рабочего хода (L) бойка 8. По мере внедрения бойка 8 в текучую среду, заполняющую камеру 5, цилиндрическая боковая поверхность бойка 8 герметизирует камеру 5, давление в ней за счет сжатия текучей среды повышается и передается на торцы ступенчатого пуансона 2 и боковые поверхности испытуемых на сжатие образцов 3. Под действием давления текучей среды в камере 5 пуансон 2 перемещается в осевом направлении и пластически деформирует как испытуемые на сжатие образцы 3, так и дополнительный свободно осаживаемый образец 4. По окончании процесса нагружения испытуемые на сжатие и свободно осаживаемый образцы 3 и 4 извлекают из корпуса 1, измеряют их последеформационные геометрические размеры (hИ, hКР,) и по формулам вычисляют:
а) при пластическом деформировании без разрушения испытуемого на сжатие образца - интенсивность напряжений
б) при пластическом деформировании с разрушением испытуемого на сжатие образца временное сопротивление разрушению
где - радиальное напряжение в испытуемом образце;
ро, р - начальное и конечное давление в текучей среде, заполняющей герметизируемую камеру в корпусе;
β - коэффициент сжимаемости текучей среды;
SБ, SП - площади нижних торцев бойка и пуансона соответственно;
WЖ - начальный объем текучей среды, заполняющей герметизируемую камеру в корпусе;
- осевое напряжение в испытуемом образце;
n - количество одновременно испытуемых на сжатие образцов;
VИ, VКР - начальные объемы испытуемого и дополнительно осаживаемого цилиндрических образцов соответственно;
σКР - величина контактного напряжения при скоростном пластическом деформировании крешера (дополнительного свободно осаживаемого цилиндрического образца), которая для конкретных температурно-скоростных условий нагружения может приниматься постоянной /2/.
Далее цикл работы устройства повторяют.
Положительный эффект разработанного устройства для испытания на сжатие металлов и сплавов состоит в следующем:
1) силовое воздействие текучей среды в герметизируемой камере на боковые поверхности испытуемых на сжатие цилиндрических образцов обеспечивает их объемное напряженное состояние и позволяет исследовать прочностные и пластические характеристики металлов и сплавов в зависимости от конкретных условий их деформирования;
2) наличие дополнительного свободно осаживаемого цилиндрического образца, препятствующего осевому движению пуансона, позволяет за счет изменения его начального диаметра (а также используемого материала) варьировать величинами давлений в текучей среде, заполняющей герметизируемую камеру, и тем самым обеспечивать различные соотношения радиальных и осевых напряжений в процессе испытаний;
3) регистрация начальной скорости подлета бойка, величины его рабочего хода, исходных и последеформационных геометрических размеров испытуемых на сжатие и дополнительного свободно осаживаемого цилиндрического образцов дают возможность расчетным способом устанавливать прочностные и пластические характеристики металлов и сплавов без использования сложных и дорогостоящих преобразователей силы (на базе тензометров) и перемещений с самопишущими приборами.
Источники информации
1. ГОСТ 25.503-80. Расчеты и испытания на прочность. Методы механических испытаний металлов. Метод испытания на сжатие. М.: Изд-во стандартов, 1981, 55 с.
2. Чечета И.А., Сай В.А. Уточнение ряда технологических параметров высокоскоростной обработки металлов давлением на основании элементов теории упругопластического удара. - Воронеж: ВПИ, 1981, 44 с.
название | год | авторы | номер документа |
---|---|---|---|
Установка для испытания образцов скальных горных пород на динамическое сжатие | 1980 |
|
SU926566A1 |
Способ определения силы контактного трения при ударном пластическом деформировании цилиндрического образца | 1986 |
|
SU1381376A1 |
УСТРОЙСТВО ДЛЯ ИСПЫТАНИЙ МАТЕРИАЛОВ НА СЖАТИЕ | 1997 |
|
RU2134414C1 |
Клепальный пневматический молоток | 1980 |
|
SU946778A1 |
СПОСОБ ИСПЫТАНИЯ УСТРОЙСТВ УДАРНОГО ДЕЙСТВИЯ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2012 |
|
RU2521718C2 |
Устройство для испытаний металлов на трехосное сжатие с образцом в форме кольца | 2023 |
|
RU2816816C1 |
СПОСОБ ФОРМООБРАЗОВАНИЯ НАРУЖНЫХ ШЛИЦЕВ ПОВЕРХНОСТНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ | 2011 |
|
RU2469834C1 |
УСТРОЙСТВО ДЛЯ ФОРМООБРАЗОВАНИЯ НАРУЖНЫХ ЩЛИЦЕВ ПОВЕРХНОСТНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ | 2011 |
|
RU2479408C2 |
Способ определения сил контактного трения при осадке | 1978 |
|
SU748151A1 |
Гидроударник | 1991 |
|
SU1779711A1 |
Изобретение относится к прочностным испытаниям для определения прочности и пластичности металлов и сплавов в условиях объемного напряженного состояния при динамическом нагружении. Устройство для испытания на сжатие металлов и сплавов содержит корпус с наковальней, размещенный в нем с возможностью осевого перемещения ступенчатый цилиндрический пуансон, при этом в корпусе выполнена ступенчатая цилиндрическая проточка, нижний торец которой образует дополнительную наковальню, верхний торец пуансона размещен в проточке корпуса с возможностью осевого перемещения. Верхний торец пуансона совместно с цилиндрической проточкой образует две сообщающиеся между собой камеры, заполненные текучей средой и герметизируемые бойком в процессе нагружения, нижний ступенчатый торец пуансона оперт на верхние торцы испытываемых на сжатие образцов, а нижний свободный торец пуансона связан со свободно осаживаемым дополнительным цилиндрическим образцом, при этом в корпусе устройства выполнены дополнительные проточки для выхода воздуха из полости, образуемой нижним свободным торцом пуансона и дополнительной наковальней корпуса. Данное изобретение направлено на повышение точности измерений прочностных и пластических свойств металлов и сплавов и упрощение процесса регистрации результатов испытаний. 1 ил.
Устройство для испытания на сжатие металлов и сплавов, содержащее корпус с наковальней, размещенный в нем с возможностью осевого перемещения ступенчатый цилиндрический пуансон, при этом в корпусе выполнена ступенчатая цилиндрическая проточка, нижний торец которой образует дополнительную наковальню, верхний торец пуансона размещен в проточке корпуса с возможностью осевого перемещения, отличающееся тем, что верхний торец пуансона совместно с цилиндрической проточкой образует две сообщающиеся между собой камеры, заполненные текучей средой и герметизируемые бойком в процессе нагружения, нижний ступенчатый торец пуансона оперт на верхние торцы испытуемых на сжатие образцов, а нижний свободный торец пуансона связан со свободно осаживаемым дополнительным цилиндрическим образцом, при этом в корпусе устройства выполнены дополнительные проточки для выхода воздуха из полости, образуемой нижним свободным торцом пуансона и дополнительной наковальней корпуса.
US 4679441 А, 14.07.1987.US 4856341 А, 15.08.1989.SU 1642306 A1, 15.04.1991.SU 299754 А, 26.03.1971.SU 1185174 А, 15.10.1985.SU 777543 А, 07.11.1980.RU 2176076 C1, 20.11.2001.GB 1514131 A, 14.06.1978. |
Авторы
Даты
2004-07-27—Публикация
2002-10-21—Подача