Изобретение относится к способам определения прочности волокнистых материалов. Способ может быть использован для определения прочности волокна хризотил-асбеста на стадии разведки месторождения, разработки, обогащения и промышленного использования готовой продукции.
Известны способы определения прочности волокна хризотил-асбеста [1]. Эти способы основаны либо на использовании различных физико-химических методов анализа вещества (рентгеновского, химического, термического, электронно-микроскопического, инфракрасной спектрометрии поглощения), либо на реакции воздействия на волокно хризотил-асбеста различными препаратами (количество растворимых примесей в концентрированной соляной кислоте, величина электрокинетического потенциала в методе электроосмоса с поправкой на поверхностную проводимость, способность волокна к распушке, окрашивание волокна раствором хлор-цинк-йода и др.), либо на упрощенном методе путем разрыва вручную.
Недостатками этих способов является то, что ни один из них не дает однозначного результата. Только комплекс перечисленных методов может, и то только качественно, оценить прочность хризотил-асбеста исключительно технологическими, не претендующими на строгость и объективность терминами “ломкий”, “полуломкий”, “нормальной прочности”. Кроме того, все эти способы сложны и трудоемки в проведении, требуют тщательного отбора и сложной специальной подготовки образца для испытаний.
Известен также прямой способ определения прочности волокна хризотил-асбеста [2]. Способ основан на приложении к образцу механических усилий на специальных аппаратах. По величине нагрузки, при которой происходит разрыв волокон, оценивают их прочность.
Недостатки способа. Способ сопряжен со значительными трудностями и дает большой разброс значений. Необходим тщательный отбор образца. Из агрегата хризотил-асбеста выбирают определенное число равных по длине, недеформированных, очень тонких волокон-иголок с диаметром сотые и тысячные доли миллиметра. Каждую иголку перед испытанием просматривают под бинокулярным микроскопом и при обнаружении в ней дефектов (микротрещин, включений других минералов), нарушающих целостность по длине, ее отбраковывают. Отобранные для испытаний волокна-иголки взвешивают на микровесах с погрешностью до 0,01 мг. В местах закрепления волокон к специальным держателям аппарата может происходить расщепление концов волокон, что приводит к искажению результатов определения прочности. По этим причинам за величину прочности испытываемого образца хризотил-асбеста принимается среднее арифметическое из определений всех отобранных волокон-иголок.
Наиболее близким по технологии и получаемому эффекту является взятый за прототип способ определения прочности материала, включающий измерение электрического сопротивления образца [3]. Образец в виде углеродной нити фиксированной длины состоит из элементарных нитей соответствующей длины. Измеряют электрическое сопротивление углеродной нити и элементарной нити, а также разрывную нагрузку элементарной нити. По этим параметрам судят о прочности углеродной нити.
Недостатками прототипа являются необходимость тщательного отбора и подготовки волокон к испытанию, а также необходимость определять разрывную нагрузку элементарного волокна путем приложения к нему механических усилий.
Цель изобретения - повышение надежности и точности определения прочности волокна хризотил-асбеста, упрощение технологического процесса за счет исключения влияния неоднородности образцов, механических повреждений волокон и за счет использования новых функциональных связей.
В предлагаемом способе образец для исследования представляет собой агрегат хризотил-асбеста, состоящий из многочисленного количества волокон-иголок в его естественном состоянии без какой-либо предварительной обработки. Образец нагревают; измеряют электрическое сопротивление в некотором температурном интервале; строят температурную зависимость электрического сопротивления в виде lgR=f(1/T), где R - электрическое сопротивление в Омах; Т - температура в градусах Кельвина; по полученной зависимости определяют энергию активации в области собственной проводимости хризотил-асбеста как E0=bktgϕ, где Е0 - энергия активации в эВ; b, k – коэффициенты; ϕ - угол наклона касательной к кривой lgR=f(1/T) в некоторой точке прямолинейного участка, не искаженного аномальными эффектами. По величине энергии активации судят о прочности волокна хризотил-асбеста.
Большинство горных пород и минералов, в том числе хризотил-асбест, являются ионными кристаллическими диэлектриками. Электропроводность их обусловлена обычно переносом ионов. Особенностью ионной электропроводности является ее увеличение с температурой. При этом известно: имеются две области на кривой проводимости, и в этих обеих областях логарифм электропроводности приближенно является линейной функцией температуры. Области отличаются типом электропроводности. Первый тип - электропроводность, обусловленная движением относительно слабо закрепленных ионов. Второй тип электропроводности - электропроводность, обусловленная движением основных ионов кристаллической решетки, так называемая собственная электропроводность. Эта электропроводность существенна при высоких температурах. Характеристикой соединения является только высокотемпературная электропроводность. Энергия активации Е0 в области собственной проводимости зависит от кристаллической структуры минерала (прочности кристаллической решетки, природы подвижных ионов, от их положения в решетке) и характеризует данное соединение.
Известно, что различный состав вмещающих пород и постоянно меняющиеся физико-химические условия среды при образовании хризотил-асбеста и последующие изменения в связи с развитием тех или иных геологических процессов привели к частичному изменению кристаллической структуры и в конечном счете к различию физико-химических и механических, в том числе прочностных, свойств хризотил-асбеста.
Способ был опробован в лабораторных условиях. Сравнительные результаты определения прочности волокна хризотил-асбеста при использовании предлагаемого и известного способов приведены в таблице:
Применение предлагаемого способа позволит повысить надежность и точность определений прочности волокна хризотил-асбеста и упростить технологический процесс.
Предлагаемый способ реализуется следующим образом.
- Измеряют электрическое сопротивление в некотором интервале температур.
- По полученным значениям строят зависимость lgR=f(1/T).
- На кривой lgR=f(1/T) в области собственной проводимости выбирают участок, не искаженный аномальными эффектами, и проводят касательную.
- Определяют тангенс угла наклона (tgϕ) и рассчитывают энергию активации по формуле E0=bktgϕ. По величине энергии активации определяют прочность на разрыв по корреляционной зависимости, установленной предварительно по нескольким эталонным образцам из данного месторождения с известным значением прочности на разрыв, определенным прямым способом.
Источники информации
1. Токер Н.И. Диагностический комплекс исследований асбестов. / Добыча и обогащение асбестовых руд. Тр. ВНИИпроектасбест, вып. 5. М.: Недра, с.68-75.
2. Методика определения содержания хризотил-асбеста. АООТ “НИИпроектасбест”, Асбест, 1999, 104 с.
3. Патент РФ 2087905, G 01 N 27/04, 3/08 – прототип.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ПРОЧНОСТИ ЛЬНЯНОЙ ТРЕСТЫ | 2012 |
|
RU2525598C1 |
Способ определения качества хризотил-асбеста | 1980 |
|
SU958973A1 |
ЭЛЕКТРОПРОВОДНЫЙ УЗЕЛ И ТОПЛИВНЫЙ ЭЛЕМЕНТ С ПОЛИМЕРНЫМ ЭЛЕКТРОЛИТОМ С ЕГО ИСПОЛЬЗОВАНИЕМ | 2009 |
|
RU2472257C1 |
КОМПЛЕКСНАЯ ДОБАВКА ДЛЯ СИЛИКАТНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И СПОСОБ ЕЕ ПРИГОТОВЛЕНИЯ | 2021 |
|
RU2768884C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ УГЛЕРОДНЫХ ВОЛОКОН | 2018 |
|
RU2698809C1 |
СПОСОБ ПОЛУЧЕНИЯ СУПЕРПРОЧНОГО ЛЕГКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА | 2009 |
|
RU2419691C2 |
Способ получения n- и p-типов протонных полупроводников | 2016 |
|
RU2649649C2 |
СПОСОБ ПОЛУЧЕНИЯ ПРОТОННОЙ ПРОВОДИМОСТИ В КРИСТАЛЛАХ И ЭЛЕКТРОИЗОЛЯЦИОННЫХ МАТЕРИАЛАХ | 2007 |
|
RU2360239C1 |
БИПОЛЯРНЫЙ ЭЛЕКТРОД ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ | 1999 |
|
RU2214652C2 |
Сепараторная бумага для химических источников тока | 1988 |
|
SU1583508A2 |
Изобретение относится к способам определения прочности волокнистых материалов и может быть использовано для определения прочности волокна хризотил-асбеста на стадии разведки месторождения, разработки, обогащения и промышленного использования готовой продукции. Технический результат изобретения - повышение надежности и точности определений прочности волокна хризотил-асбеста и упрощение технологического процесса. Сущность: исследуемый образец волокна хризотил-асбеста нагревают, измеряют электрическое сопротивление, по полученной зависимости lgR=f(1/Т) определяют энергию активации Е0 в области собственной проводимости хризотил-асбеста, по величине которой судят о прочности волокна хризотил-асбеста. 1 табл.
Способ определения прочности волокна хризотил-асбеста, включающий измерение электрического сопротивления образца, отличающийся тем, что образец, представляющий собой агрегат хризотил-асбеста, состоящий из многочисленного количества волокон-иголок без предварительной обработки, нагревают, измеряют электрическое сопротивление в некотором интервале температур, строят температурную зависимость электрического сопротивления в виде lgR=f(1/Т), где R - электрическое сопротивление, Ом; Т - температура, К, по полученной зависимости определяют энергию активации в области собственной проводимости хризотил-асбеста по формуле E0=bktgϕ, где Е0 - энергия активации, эВ; b - коэффициент, равный 2; k - постоянная Больцмана; ϕ - угол наклона касательной к кривой lgR=f(1/Т) в некоторой точке прямолинейного участка, не искаженного аномальными эффектами, а по величине энергии активации судят о прочности волокон хризотил-асбеста.
RU 20087905 С1, 20.08.1997 | |||
Способ контроля полиакрилонитрильного сырья для получения углеродных волокон | 1989 |
|
SU1698721A1 |
Способ определения качества хризотил-асбеста | 1980 |
|
SU958973A1 |
Авторы
Даты
2004-11-27—Публикация
2003-02-06—Подача