Изобретение относится к металлургии цветных металлов и сплавов, содержащих в основе медь с различным содержанием легирующих и примесных элементов, и может быть использовано в атомной и термоядерной энергетике, а также в электротехнической, электровакуумной и криогенной отраслях промышленности.
Известны медные сплавы, применяемые в данных областях техники (например, медные сплавы марок МO, M1, M2, МЗ), а также другие аналоги, обнаруженные при изучении научно-технической и патентной литературы [1-5]. Однако известные материалы не обеспечивают требуемого уровня и стабильности основных физико-механических и служебных свойств в условиях длительной эксплуатации, что снижает надежность и срок службы конструкционных материалов.
Наиболее близкой к заявляемой композиции по назначению и составу компонентов является техническая медь под марочным обозначением M1 по ГОСТ 859-78 [1], содержащая в своем составе следующие элементы, маc.%:
Свинец ≤0,005
Цинк ≤0,004
Олово ≤0,002
Сурьма ≤0,002
Висмут ≤0,001
Кислород ≤0,05
Сера ≤0,005
Медь Остальное
Данную марку медного сплава в соответствии с требованиями ГОСТ рекомендуется использовать в различных отраслях промышленности и народного хозяйства при производстве серийного электротехнического (токоподводы, выключатели, электропроводящие шины и т.д.) и теплообменного (трубные системы, котлы, водоохлаждаемые изложницы и др.) оборудования. При этом известный материал характеризуется широким разбросом и нестабильностью физико-механических и служебных свойств, что не отвечает предъявляемым требованиям, определяющим заданную работоспособность и эксплуатационную надежность облицовки 1-й стенки приемных пластин и элементов дивертора термоядерного реактора [6-9].
Задачей настоящего изобретения является создание медного сплава, обладающего повышенной структурной стабильностью, улучшенными прочностными и пластическими характеристиками, что достигается за счет формирования устойчивой дислокационной структуры. Получение сплава с более высоким уровнем основных физико-механических, технологических и служебных свойств обеспечивает повышение эксплуатационной надежности и общего ресурса работы защитных систем термоядерного реактора. Поставленная в заявке задача решается в отличие от ранее известных способов решения изменением соотношения легирующих элементов и введением в состав заявляемой композиции оптимального количества иттрия с ограничением содержания нерастворимых в твердом растворе меди некоторых примесных элементов, вызывающих образование в приграничных областях легкоплавких эвтектик.
Предлагается медный сплав, содержащий, мас.%:
Олово 0,0005-0,002
Цинк 0,001-0,004
Свинец 0,001-0,004
Сурьма 0,0005-0,002
Висмут 0,0005-0,001
Иттрий 0,005-0,02
Кислород 0,01-0,038
Сера 0,001-0,005
Медь Остальное
При этом введено ограничение суммарного содержания некоторых элементов, существенно влияющих на формирование заданного структурного состояния сплава и во многом определяющих требуемый уровень основных физико-механических, технологических и служебных свойств заявляемого материала, в частности: суммарное содержание свинца и висмута не должно превышать 0,0045%, а общее содержание кислорода и серы не должно превышать 0,04%.
В таблице 1 приведены варианты предлагаемого сплава в сравнении с известным аналогом.
Соотношение указанных элементов выбрано таким, чтобы сплав после соответствующей термической обработки обеспечивал требуемый уровень и стабильность важнейших физико-механических свойств, определяющих высокую работоспособность материала в сложных условиях эксплуатации термоядерного реактора.
Результаты проведенных исследований показали (табл.2, 3), что введение в заявляемую композицию микролегирующих добавок иттрия в указанном соотношении с растворимыми в меди оловом и цинком повышает структурную стабильность в области рабочих температур, приводит к улучшению прочностных и пластических характеристик материала, а также способствует росту деформационной способности и технологичности сплава на стадии металлургического передела при производстве полуфабрикатов сложного профиля. Это объясняется тем, что иттрий, являясь весьма сильным модификатором и обладая рафинирующим действием на твердый раствор, способствует снижению химической и структурной неоднородности литого металла. При этом, как показали наши исследования, происходит более равномерное перераспределение легирующих элементов и неметаллических включений по сечению слитка, металл эффективнее очищается от вредных примесей и газов, тоньше и чище становятся границы зерна, увеличивается прочность межкристаллитной связи, что в целом приводит к повышению прочностных и пластических характеристик сплава. Введение иттрия в заявляемую композицию вне указанных в формуле изобретения пределов снижает эффективность его положительного влияния на весь комплекс важнейших свойств материала, что приводит к общему снижению эксплуатационных характеристик изделия.
Ограничение суммарного содержания нерастворимых в меди примесных элементов Рb и Bi в указанных в формуле изобретения пределах также направлено на повышение структурной стабильности и получение требуемого комплекса механических характеристик заявляемого сплава. При этом обеспечение требуемого уровня прочностных и пластических свойств сплава в термообработанном состоянии достигается за счет формирования устойчивой дислокационной структуры, в значительной мере определяющей число активных плоскостей скольжения {111} в процессе пластической деформации и отражающей вклад дислокационной неупругости в процессы внутреннего трения. Увеличение содержания указанных примесей свыше заявляемых пределов вызывает образование в процессе технологических нагревов легкоплавких эвтектик, располагающихся по границам зерен основной фазы, что существенно повышает чувствительность меди к процессам красноломкости.
Выбор системы комплексного легирования заявляемой композиции предусматривает ограничение содержания также таких химически активных в меди элементов, как кислорода и серы, образующих промежуточные фазы типа Сu2О и Сu2S и усиливающих структурную гетерогенность в приграничных областях в виде эвтектик. Учитывая также, что защитные элементы термоядерного реактора работают в условиях длительного контакта с водородосодержащими средами и что указанные примесные элементы повышают склонность медных сплавов к водородной хрупкости (“водородная болезнь”) с вытекающими отсюда нежелательными последствиями, целесообразно ограничить общее содержание кислорода и серы в металле до 0,04%.
Таким образом, полученный более высокий уровень основных физико-механических, технологических и служебных свойств заявляемой композиции обеспечивается комплексным легированием сплава в указанном соотношении с другими элементами. При этом ограничение суммарного содержания свинца и висмута до 0,0045%, а также кислорода и серы до 0,04% обусловлено тем, что эти элементы оказывают негативное воздействие на процессы структурообразования в условиях длительных эксплуатационных нагревов. Повышение чистоты металла по указанным примесным элементам в сочетании с микролегированием иттрием способствует формированию более однородной структуры, существенно снижает анизотропию свойств и склонность сплава к хрупкому разрушению. Такое структурное состояние обеспечивает наиболее полную рекомбинацию радиационных точечных дефектов в условиях нейтронного облучения, тем самым повышая стойкость сплава к вакансионному распуханию.
На кафедре общей физики Белгородского государственного университета совместно с Харьковским физико-техническим институтом и ЦНИИ конструкционных материалов “Прометей” (г.Санкт-Петербург) выполнен комплекс лабораторных и опытно-промышленных работ по выплавке, пластической и термической обработкам заявляемой марки сплава. Металл выплавлялся в 100 кг индукционной электропечи экспериментального металлургического производства ЦНИИ КМ “Прометей” с последующей разливкой в слитки массой до 25 и 50 кг. В дальнейшем слитки подвергались обработке давлением на промышленном кузнечно-прессовом и прокатном оборудовании с целью получения необходимых полуфабрикатов требуемого сортамента.
Химический состав исследованных материалов, а также результаты определения необходимых физико-механических и служебных свойств представлены в табл.1-3. Результаты механических испытаний усреднены по 3 образцам на точку. Определение логарифмического декремента колебаний как показателя внутреннего трения металла и оценка его структурного состояния проводилось на установке Д-6М с последующей компьютерной обработкой. Оценка сопротивляемости исследуемых материалов против вакансионного распухания проводилась методом моделирования радиационных повреждений на ускорителе заряженных частиц
Ожидаемый технико-экономический эффект от использования заявляемого материала, например, в атомном энергомашиностроении выразится в повышении эксплуатационной надежности, безопасности и общего ресурса работы защитных систем термоядерных реакторов. Новое техническое решение может быть использовано также в других отраслях промышленности при производстве современной высоконадежной техники.
Источники информации
1. ГОСТ 859-78 “Медь”. Марки. - Прототип.
2. А.П.Смирнов, Н.А.Смирягина, А.В.Белова. Промышленные цветные металлы и сплавы. - М.: Металлургия, 1974.
3. Савицкий Е.М. Перспективы развития металловедения. - М.: Наука, 1972.
4. Зеленский В.Ф., Неклюдов И.М. Влияние РЗЭ на радиационную стойкость материалов. - Радиационное материаловедение. Харьков, ХФТИ, 1990, т.2., с.45-57.
5. Неклюдов И.М., Камышанченко Н.В., Беленко И.А. и др. Влияние легирования иттрием на механические свойства чистой меди. Научные ведомости БГУ, 1997, №2, с.66-74.
6. Федеральная целевая научно-техническая программа “Разработка и исследования конструкционных материалов термоядерных реакторов (ИТЭР, экспериментальные модули ИТЭР, ДЕМО и др.), а также три-тийвоспроизводящих материалов и тритиевой технологии ТЯР”, 1997.
7. “Белая книга ядерной энергетики”. Изд-во Минатома РФ, 2001, с.60-73.
8. Федеральная целевая Программа на 2002-2005 гг. “Международный термоядерный реактор ИТЭР”. Утверждена постановлением Правительства РФ за №604 от 21.08.01.
9. “В энергетике грядет великая революция”. Еженедельник “Петровский курьер”, №36 от 28.09.98.
название | год | авторы | номер документа |
---|---|---|---|
БРОНЗА ДЛЯ ТЕПЛООБМЕННОГО ОБОРУДОВАНИЯ И ЗАЩИТНЫХ СИСТЕМ ТЕРМОЯДЕРНЫХ РЕАКТОРОВ | 2009 |
|
RU2412268C1 |
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ С НИЗКОЙ ВОДОРОДОПРОНИЦАЕМОСТЬЮ ДЛЯ ВНУТРИКОРПУСНЫХ СИСТЕМ ТЕРМОЯДЕРНОГО РЕАКТОРА | 2005 |
|
RU2293788C2 |
ЛИСТОВАЯ ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ ВЫСОКОНАГРУЖЕННЫХ КОНСТРУКЦИЙ КОНТЕЙНЕРНОЙ ТЕХНИКИ АТОМНОЙ И ТЕРМОЯДЕРНОЙ ЭНЕРГЕТИКИ | 2009 |
|
RU2413782C1 |
ТЕПЛОСТОЙКАЯ И РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ | 2016 |
|
RU2634867C1 |
СТАЛЬ ДЛЯ КОРПУСОВ АТОМНЫХ РЕАКТОРОВ ПОВЫШЕННОЙ НАДЕЖНОСТИ И РЕСУРСА | 1999 |
|
RU2166559C2 |
ТЕПЛОСТОЙКАЯ И РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2021 |
|
RU2773227C1 |
МАЛОАКТИВИРУЕМАЯ КОРРОЗИОННО-СТОЙКАЯ И РАДИАЦИОННО СТОЙКАЯ ХРОМИСТАЯ СТАЛЬ | 2006 |
|
RU2325459C2 |
НЕРЖАВЕЮЩАЯ СТАЛЬ ДЛЯ ТРУБОПРОВОДОВ И ТРУБНЫХ СИСТЕМ ТЕРМОЯДЕРНОЙ И ВОДОРОДНОЙ ЭНЕРГЕТИКИ | 2004 |
|
RU2273679C1 |
ТЕПЛОСТОЙКАЯ И РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ | 2016 |
|
RU2633408C1 |
ВЫСОКОПРОЧНАЯ ТЕПЛОСТОЙКАЯ И РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2021 |
|
RU2777681C1 |
Изобретение относится к металлургии цветных металлов и сплавов, содержащих в основе медь с различным содержанием легирующих и примесных элементов, и может быть использовано в атомной и термоядерной энергетике, а также в электротехнической, электровакуумной и криогенной отраслях промышленности. Предложен медный сплав, содержащий олово, цинк, свинец, сурьму, висмут, кислород, серу и медь, при этом он дополнительно содержит иттрий, при следующем соотношении компонентов, мас.%: олово 0,0005-0,002; цинк 0,001-0,004; свинец 0,001-0,004; сурьма 0,0005-0,002; висмут 0,0005-0,001; иттрий 0,005-0,02; кислород 0,01-0,038; сера 0,001-0,005; медь - остальное, при этом суммарное содержание свинца и висмута не превышает 0,0045%, содержание кислорода и серы не превышает 0,04%. Технический результат - получение медного сплава с повышенной структурной стабильностью, высоким уровнем физико-механических, технологических и служебных свойств, что обеспечит повышение эксплуатационной надежности и ресурса работы защитных систем термоядерного реактора. 3 табл.
Медный сплав, содержащий олово, цинк, свинец, сурьму, висмут, кислород, серу и медь, отличающийся тем, что он дополнительно содержит иттрий, при следующем соотношении компонентов, мас.%:
Олово 0,0005-0,002
Цинк 0,001-0,004
Свинец 0,001-0,004
Сурьма 0,0005-0,002
Висмут 0,0005-0,001
Иттрий 0,005-0,02
Кислород 0,01-0,038
Сера 0,001-0,005
Медь Остальное
при этом суммарное содержание свинца и висмута не превышает 0,0045%, содержание кислорода и серы не превышает 0,04%.
Опорные части для крестовин, подшипников и т.п. | 1925 |
|
SU856A1 |
Марки | |||
- М.: Издательство комитета стандартов, 1978 | |||
Медный антифрикционный сплав | 1949 |
|
SU87845A1 |
СПЛАВ НА ОСНОВЕ МЕДИ | 1988 |
|
RU2093598C1 |
US 6419766 A, 16.07.2002 | |||
US 5487867 A, 30.01.1996. |
Авторы
Даты
2004-12-10—Публикация
2004-01-19—Подача