Изобретение относится к области авиационного двигателестроения, а именно к устройствам опор турбин газотурбинных двигателей, предназначенных преимущественно для летательных аппаратов (далее л.а.).
Известна опора турбины газотурбинного двигателя (далее ГТД), содержащая корпус подшипника, соединенный с силовым корпусом турбины стяжными стержнями, проходящими через внутренние полости лопаток соплового аппарата (1).
Известная опора расположена перед рабочим колесом турбины высокого давления, и осевые нагрузки в ней воспринимаются поддерживающим конусом, закрепленным на корпусе подшипника и камере сгорания. Однако при расположении опоры турбины в пространстве между рабочими колесами турбин высокого и низкого давления такая конструкция опоры, ввиду ограниченности осевого пространства, практически не осуществима, а в большинстве конструктивных схем двухроторных двигателей, в особенности имеющих систему охлаждения рабочего колеса турбины высокого давления, опора турбины расположена именно в междисковом пространстве. Вместе с тем, для двигателей, используемых для л.а., в отличие от двигателей для стационарных газотурбинных установок, восприятие опорой возникающих при эволюциях л.а. осевых нагрузок крайне необходимо.
Кроме того, при переходе с одного режима работы двигателя на другой температура элементов наружного корпуса турбины и корпуса подшипника различна, из-за чего возникают радиальные деформации этих элементов, которые при их жестком креплении друг с другом приводят к появлению температурных напряжений. Это может привести к разрушению элементов опоры и, тем самым, снижает надежность ее работы.
Задачей заявленного изобретения является повышение надежности работы опоры турбины ГТД, за счет обеспечения восприятия элементами опоры осевых нагрузок и момента из плоскости опоры, возникающих на двигателе при эволюциях летательного аппарата, а также устранения температурных напряжений, возникающих в элементах опоры.
Технический результат достигается тем, что в опоре ротора турбины газотурбинного двигателя, содержащей корпус подшипника, соединенный с силовым корпусом турбины стяжными стержнями, проходящими через внутренние полости лопаток соплового аппарата, продольные оси стяжных стержней наклонены относительно плоскости поперечного сечения опоры, причем наклон каждой пары соседних стержней относительно этой плоскости направлен в разные стороны.
Кроме того, в опоре ротора турбины газотурбинного двигателя может иметь место следующее:
- места соединения каждой пары соседних стяжных стержней с силовым корпусом турбины смещены друг относительно друга в продольном направлении;
- места соединения каждой пары соседних стяжных стержней с корпусом подшипника смещены друг относительно друга в продольном направлении;
- через внутреннюю полость одной лопатки соплового аппарата проходит пара стяжных стержней;
- на стяжных стержнях установлены упругие элементы.
Наклон каждой пары стяжных стержней в разные стороны относительно плоскости поперечного сечения опоры обеспечивает наличие угла между силовыми элементами в каждой паре соседних стержней и, тем самым, образует силовую конструкцию, воспринимающую осевые нагрузки.
В одном из частных случаев выполнения опоры, когда места соединения каждой пары соседних стяжных стержней с силовым корпусом турбины смещены друг относительно друга в продольном направлении, каждая пара силовых элементов образует в плоскости силовой треугольник с вершиной, располагаемой на корпусе подшипника в поперечном сечении опоры.
Одновременное смещение друг относительно друга в продольном направлении мест соединения каждой пары соседних стяжных стержней с корпусом подшипника и мест соединения каждой пары соседних стержней с силовым корпусом турбины, обеспечивает перекрещивание стержней в плоскости, что позволяет разместить силовые стержни на более ограниченном пространстве, отведенном под опору, сохранив при этом наличие заданного угла между продольными осями соседних стержней.
Прохождение двух стяжных стержней через внутреннюю полость одной сопловой лопатки позволяет использовать в соединении корпуса турбины с корпусом подшипника удвоенное количество силовых элементов, повышая тем самым надежность работы опоры.
Установка на стяжных стержнях упругих элементов позволяет скомпенсировать радиальные перемещения корпуса подшипника относительно силового корпуса турбины, возникающих из-за различной температуры их нагрева, уменьшая, тем самым, температурные напряжения на стационарных, и, в особенности, переменных режимах работы двигателя, что также повышает надежность работы опоры.
Изобретение поясняется графически, где на чертеже изображен общий вид опоры турбины.
Опора турбины газотурбинного двигателя содержит силовой корпус турбины 1, корпус подшипника 2 и стяжные стержни 3, соединяющие корпуса 1 и 2. Стержни 3 проходят через внутренние полости сопловых лопаток 4. Через внутреннюю полость одной сопловой лопатки 4 может проходить один или пара стяжных стержней 3. Продольные оси 5 стяжных стержней наклонены относительно поперечного сечения опоры, причем в каждой паре соседних стержней оси 5 наклонены в разные стороны. В результате такого наклона стержни 3 в каждой паре образуют в плоскости угол или перекрещиваются. На стержнях 3, например, в месте их крепления на корпусе 1, установлены упругие элементы 6, которые могут быть выполнены, например, в виде тарельчатых пружин.
Работа опоры осуществляется следующим образом.
В процессе работы двигателя радиальная нагрузка, действующая на опору, воспринимается за счет того, что одна половина стержней 3 растягивается, а другая половина сжимается, при этом усилие по стержням распределяется по закону косинуса.
За счет расположения стяжных стержней в опоре под углом относительно друг друга, каждая пара соседних стержней образует в плоскости силовой треугольник. В этом треугольнике при действии на опору осевой силы один из стержней работает на сжатие, а другой на растяжение, в результате чего в треугольнике возникает реактивная сила. Сумма осевых составляющих реактивных сил, возникающих в каждой паре стержней, равняется по величине действующей осевой нагрузке. Таким образом, опора воспринимает осевую нагрузку.
Кроме того, в большинстве конструкций известных двигателей с межроторным подшипником подшипник расположен с выносом относительно среднего сечения опоры, что приводит к появлению изгибающего момента из плоскости опоры, который при эволюциях л.а. имеет значительную величину. Этот момент преобразуется в пару осевых сил, которые воспринимаются опорой аналогично восприятию осевой нагрузки.
Взаимное радиальное смещение корпусов 1 и 2, возникающее на переходных режимах работы двигателя из-за разницы их температур, компенсируется изменением длины упругих элементов 6, причем натяжение стержней 3, стягивающих корпуса 1 и 2, выбирается таким образом, чтобы любой температурный градиент между корпусами 1 и 2 не приводил к расслаблению стыка стержней 3 с этими корпусами.
Изобретение позволяет повысить надежность работы опоры турбины ГТД, за счет обеспечения восприятия элементами опоры осевых нагрузок, возникающих на двигателе при эволюциях летательного аппарата, а также за счет компенсации радиального перемещения корпуса подшипника относительно силового корпуса турбины.
Источники информации
Патент Великобритании №2229229А, МПК 7 F 02 С 7/06, 1990 г.
название | год | авторы | номер документа |
---|---|---|---|
ОПОРА ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2006 |
|
RU2326251C1 |
ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 1991 |
|
RU2028460C1 |
Сопловый аппарат турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) (варианты) и лопатка соплового аппарата ТНД (варианты) | 2018 |
|
RU2691203C1 |
Компрессор низкого давления газотурбинного двигателя авиационного типа (варианты) | 2016 |
|
RU2614708C1 |
Устройство механического управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора и турбины газотурбинного двигателя. Способ управления радиальным зазором между концами рабочих лопаток ротора и статора компрессора и турбины газотурбинного двигателя | 2017 |
|
RU2702063C2 |
Ротор турбины низкого давления (ТНД) газотурбинного двигателя (варианты), узел соединения вала ротора с диском ТНД, тракт воздушного охлаждения ротора ТНД и аппарат подачи воздуха на охлаждение лопаток ротора ТНД | 2018 |
|
RU2684355C1 |
Способ охлаждения соплового аппарата турбины низкого давления (ТНД) газотурбинного двигателя и сопловый аппарат ТНД, охлаждаемый этим способом, способ охлаждения лопатки соплового аппарата ТНД и лопатка соплового аппарата ТНД, охлаждаемая этим способом | 2018 |
|
RU2691202C1 |
Компрессор низкого давления газотурбинного двигателя авиационного типа (варианты) | 2016 |
|
RU2614709C1 |
Опора вала ротора компрессора низкого давления газотурбинного двигателя (варианты), корпус опоры вала ротора и корпус шарикоподшипника опоры вала ротора | 2016 |
|
RU2614020C1 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 2013 |
|
RU2555933C2 |
Изобретение относится к области авиационного двигателестроения, а именно к устройствам опор турбин газотурбинных двигателей, предназначенных преимущественно для летательных аппаратов. Опора турбины газотурбинного двигателя содержит корпус турбины 1, корпус подшипника 2 и стяжные стержни 3, соединяющие корпуса 1 и 2. Стержни 3 проходят через внутренние полости сопловых лопаток 4. Через внутреннюю полость одной сопловой лопатки 4 может проходить один или пара стяжных стержней 3. Продольные оси 5 стяжных стержней наклонены относительно поперечного сечения опоры, причем в каждой паре соседних стержней оси 5 наклонены в разные стороны. В результате такого наклона стержни 3 в каждой паре образуют в плоскости угол или перекрещиваются. На стержнях 3 установлены упругие элементы 6. Изобретение позволяет повысить надежность работы опоры турбины ГТД, за счет обеспечения восприятия элементами опоры осевых нагрузок, возникающих на двигателе при эволюциях летательного аппарата, а также устранения температурных напряжений на элементах опоры. 4 з.п.ф-лы, 1 ил.
ГЕРБИЦИДНЫЙ СОСТАВ | 2002 |
|
RU2229229C1 |
US 4965994 A, 30.10.1990 | |||
Устройство для крепления турбины с осевым выходом | 1990 |
|
SU1814690A3 |
Опорное устройство осевой стационарной турбины | 1990 |
|
SU1808094A3 |
Устройство для установки корпуса турбомашины | 1984 |
|
SU1240923A1 |
US 5160251 A, 03.11.1999. |
Авторы
Даты
2004-12-10—Публикация
2003-05-16—Подача