СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНЕЙ-НАКОПИТЕЛЕЙ Российский патент 2005 года по МПК G21G1/02 

Описание патента на изобретение RU2248056C2

Изобретение относится к области атомной техники и может быть использовано для накопления и преобразования химических элементов в результате ядерных реакций.

Известен способ изготовления мишеней-накопителей методом плавки и литья. Этот способ предусматривает использование стартовых элементов в виде металлов, либо восстановление элементов в процессе формирования мишени и включает приготовление сердечников алюмотермическим восстановлением оксидов ТПЭ с последующей разливкой в изложницы из графита (пат. ФРГ 1343961, 1971).

Недостатком этого способа является многостадийностъ и сложность технологии, приводящие к большим количествам отходов при изготовлении мишеней-накопителей. Особенно эти потери существенны (до 30%) при периодическом изготовлении мишеней-накопителей в малых масштабах.

Наиболее близким к заявляемому является способ изготовления мишеней-накопителей, включающий получение порошков оксидов трансплутониевых элементов (ТПЭ) термическим разложением их оксалатов, смешивание порошков оксидов ТПЭ с порошком матрицы (алюминий) с последующим прессованием таблеток, вакуумной термообработкой при 600°С (см. сб. “Теплофизические исследования-80” Обнинск, ФЭИ, 1982, с.134-143, Давиденко В.А. и др. “Получение трансплутониевых элементов в реакторах СМ-2 и МИР”. Ат. энергия, 1972, т.33, вып.4, с.815-819).

Существенными ограничениями способа не позволяющими увеличить производительность получения ТПЭ и упростить технологию, являются:

- значительная неравномерность распределения стартового элемента из-за большой разности плотностей оксидов ТПЭ и порошка матрицы (более, чем в 4 раза!) и, как следствие, значительная неравномерность распределения объемной плотности теплового потока в мишени (“Основы порошковой металлургии”, Федоренко И.И., Андриевский Г.А., Киев, 1983, с.143-150). Для исключения локальных перегревов количество загружаемого стартового элемента уменьшают на 20-30%;

- большие потери (до 20%) стартового элемента на стации перемигивания порошков, поскольку используются частицы оксидов ТПЭ малых размеров, легко распыляемые при изготовлении (о распылении малых частиц см. в работе “Основы порошковой металлургии” И.И. Федоренко, Г.А. Андриевский, Киев, 1983, с.142, 407, 409, 411, 412).

Вышеперечисленные недостатки устраняются тем, что в предлагаемом способе изготовления мишеней-накопителей прессуют пористую инертную матрицу из металлопорошка, термообрабатывают ее в вакууме при t=400-600°С, пропитывают матрицу органической жидкостью с температурой кипения 30-80°С при температуре ниже кипения, нагревают матрицу в объеме экстракта стартового элемента в высокомолекулярной изомерной карбоновой кислоте (ВИК-1) до температуры кипения легколегучей органической жидкости до полного ее выкипания, охлаждают матрицу в объеме экстракта до температур 20-30°С, выдерживают при данной температуре в течение 30-60 мин, а отделение органической составляющей экстракта и одновременную фиксацию стартового элемента в объеме пористой матрицы осуществляют термообработкой в инертной или вакуумной атмосфере при 450-600°С.

Отличительным признаком заявляемого способа является пропитка пористой инертной матрицы легколетучей органической жидкостью с последующим нагреванием ее в экстракте стартового элемента в ВИК и охлаждение при заявляемых параметрах.

Отличительные признаки существенны, т.к. благодаря их наличию в совокупности с известными предлагается новое техническое свойство - повышение равномерности распределения стартового элемента в объеме матрицы, что позволяет увеличить загрузку стартового элемента в мишень и, таким образом, повысить производительность получения ТПЭ.

Роль легколетучей органической жидкости сводится к вытеснению газов (воздуха) из объема пор матрицы, т.е. к заполнению объема пор этой жидкостью. Легколетучие органические жидкости обладают хорошей текучестью и прекрасной смачиваемостью металлов в отличие от водных растворов. В качестве летучей органической жидкости могут быть использованы углеводороды и их смеси, кетоны, спирты, эфиры и другие соединения. Температура кипения должна быть 30-80°С. При более низкой температуре кипения вследствие интенсивного испарения количество вводимого стартового элемента снижается. При температуре более 80°С становится существенным испарение ВИК из экстракта. При этом изменяется содержание стартового элемента в ВИК, возможно образование осадков, снижается точность введения стартового элемента в матрицу.

Время пропитки пористой матрицы органической легколетучей жидкостью найдено экспериментальным путем. Если пропитка осуществляется менее 5 минут, количество вводимого материала меньше теоретически возможного. Увеличение времени пропитки не приводит к повышению количества введенного материала.

Нагревание пористой матрицы, пропитанной легколетучей жидкостью, в экстракте ВИК приводит к выкипанию этой жидкости из объема пор. В освободившиеся поры заходит экстракт стартового элемента в ВИК. Выкипание легколетучей жидкости прекращается через 5-10 минут в зависимости от геометрических размеров матрицы. Окончание этого процесса фиксируется по превращению выделения пузырьков газа из матрицы.

Затем экстракт вместе с матрицей охлаждают до температуры 20-30°С и выдерживают в нем матрицу 30-60 мин. Это время было найдено экспериментальным путем. При времени выдержки менее 30 мин экстракт ВИК не успевает заполнить все поры матрицы. За время выдержки 30-60 мин количество введенного материала близко к теоретически возможному, исходя из объема пор образца и концентрации стартового элемента в экстракте.

Заполнение пор матрицы экстрактом стартового элемента в ВИК с помощью вакуума не приводит к заметному результату (см. таблицу 1).

Температура разложения экстрактов стартовых элементов в ВИК до оксидов в матрице составляет 450-800°С. При меньшей температуре термообработки полного разрушения органической составляющей не происходит. При этом остаток пиролиза экстракта представляет собой смолистые отложения, которые закрывают поры, уменьшая открытую пористость матрицы. При температуре более 800°С скорость разложения экстрактов очень высока, что приводит разрушению образца продуктами пиролиза. Таким образом, следует считать, что оптимальная температура пиролиза составляет 450-800°С.

В качестве пористой матрицы использовали таблетки, спрессованные из алюминиевого порошка ПА-4 при давлении 300 МПа. Спрессованные таблетки прокаливали в вакууме при температуре 600°С в течение 1 часа. Геометрические размеры таблеток были следующие - диаметр 9 мм, высота 20-25 мм, масса в пределах 3 г. Пористость каждой таблетки рассчитывалась по формуле:

где Vг - геометрический объем таблетки;

Vп - объем таблетки, определенный пикнометрическим способом и была равна 12,5-14%. Увеличение массы таблеток после цикла насыщения определяли на аналитических весах с точностью ±0,0002 г. В качестве легколетучей жидкости использовали диэтиловый эфир, а также для сравнения осуществляли вакуумную пропитку. Имитатором стартового элемента был цирконий. Концентрация его в ВИК была 31,7 г/л. Пиролиз проводили в шахтной печи в атмосфере аргона при температуре 600°С в течение 3 мин.

Таблетки опускали в эфир, выдерживали до прекращения выделения пузырьков газа (7 минут) из матрицы Затем пинцетом таблетки опускали в экстракт циркония в ВИК, нагретый до 80°С. Начиналось выделение пузырьков газа (пары эфира) из пор таблетки. Через 6-7 минут пузырьки газа прекращали выделяться. После отключения нагрева экстракта таблетки выдерживали в экстракте 50 мин. Затем таблетку помещали в печь в атмосферу аргона. После пиролиза таблетку взвешивали.

Результаты приведены в таблице 1.

Таблица 1№№ п/п12345Материал таблеткиАлюминий ПА-4Иходная масса таблетки, г2,08682,12372,04052,00571,9986Объем матрицы, см30,9610,9780,9400,9230,997Способ выделния эктракта в матрицуПредварительная пропитка диэтиловым эфиромПропитка экстрактом ВИК под вакуумомУвеличение массы таблетки, г0,01590,01610,01230,00150,0010Степень заполнения пор, %98,898,578107,75Время выдержки экстракта при 20°С, мин.507515  ПримечаниеТкип диэтилового эфира ~34°С  Нагрев в объеме экстракта не проводили 

Образец 1 разрезали на 7 частей и в каждой части определяли содержание циркония эмиссионным спектральным методом на примере ДФС-8, чтобы рассчитали потери циркония и равномерность распределения его в объеме матрицы.

В качестве базового варианта была приготовлена таблетка по прототипу.

Сравнение приведено в таблице 2.

Таблица 2Способ изготовленияПотери циркония при изготовленииРавномерность распределения циркония, %Предлагаемый4-5*94Базовый1080* Приведена цифра улавливаемых потерь, возвращаемых в цикл

Основными преимуществами предлагаемого способа являются:

- высокая точность дозирования стартового элемента в каждую таблетку и в связи с этим возможность профилирования распределения стартового элемента по высоте мишени;

- низкий уровень потерь стартового элемента за счет полного исключения пылящих операций при введении его в объем матрицы;

- высокая равномерность распределения стартового материала в объеме матрицы (в соответствии с равномерностью пористости матрицы);

- удовлетворительная теплопроводность мишени, определяемая теплопроводностью цельнометаллической, предварительно спрессованной, матрицы;

- уменьшение радиационной опасности процесса изготовления мишени за счет исключения пылящих операций и сокращения потерь радиоактивного материала в виде аэрозолей;

- незначительные изменения геометрических размеров таблеток в процессе их насыщения стартовым элементом дает возможность изготавливать таблетки из неактивного металлопорошка с заданной пористостью и точными размерами недистанционными методами, тем самым регулируя воздушный зазор между таблеткой и внутренней оболочкой мишени.

Похожие патенты RU2248056C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНИ ДЛЯ ОБЛУЧЕНИЯ В РЕАКТОРЕ 2000
  • Лебедев В.М.
  • Андреев В.П.
  • Карелин Е.А.
  • Ядовин А.А.
RU2176418C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНИ ДЛЯ ОБЛУЧЕНИЯ В РЕАКТОРЕ 2003
  • Лебедев В.М.
  • Топоров Ю.Г.
  • Тарасов В.А.
  • Андреев В.П.
RU2240614C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНЕЙ-НАКОПИТЕЛЕЙ 2003
  • Лебедев В.М.
  • Топоров Ю.Г.
  • Андреев В.П.
RU2237937C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНИ ДЛЯ ОБЛУЧЕНИЯ В РЕАКТОРЕ 2001
  • Лебедев В.М.
  • Андреев В.П.
  • Топоров Ю.Г.
  • Ядовин А.А.
RU2192678C1
СПОСОБ ИЗГОТОВЛЕНИЯ АКТИВНОЙ ЧАСТИ ИСТОЧНИКА ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ 1999
  • Андрейчук Н.Н.
  • Лебедева Л.С.
  • Рябинин М.А.
  • Радченко В.М.
RU2170968C1
МИШЕНЬ ДЛЯ НАКОПЛЕНИЯ ТРАНСКЮРИЕВЫХ ЭЛЕМЕНТОВ 1996
  • Топоров Ю.Г.
  • Адаев В.А.
  • Мамелина Л.В.
  • Лебедев В.М.
  • Филимонов В.Т.
RU2119202C1
Способ экстракционного выделения трансплутониевых и редкоземельных элементов 2021
  • Винокуров Сергей Евгеньевич
  • Куляко Юрий Михайлович
  • Маликов Дмитрий Андреевич
  • Перевалов Сергей Анатольевич
  • Пилюшенко Константин Сергеевич
  • Савельев Борис Витальевич
  • Трофимов Трофим Иванович
  • Федоров Юрий Степанович
RU2774155C1
СПОСОБ НАСЫЩЕНИЯ ПОРИСТЫХ ЗАГОТОВОК ОКСИДАМИ МЕТАЛЛОВ 2014
  • Лысенко Евгений Константинович
  • Марушкин Дмитрий Валерьевич
  • Миреев Тимур Алданович
  • Хмелевская Ирина Валентиновна
  • Чумак Леся Григорьевна
RU2568425C1
Способ изготовления керамзита 1978
  • Ольков Павел Леонтьевич
  • Гильманов Хатмулла Габдуллович
  • Николаев Николай Васильевич
  • Пракин Геннадий Александрович
SU796224A1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ ТУГОПЛАВКИХ КАРБИДОВ ДЛЯ ПОКРЫТИЙ И КОМПОЗИТОВ НА ИХ ОСНОВЕ 2007
  • Кузнецов Николай Тимофеевич
  • Севастьянов Владимир Георгиевич
  • Симоненко Елизавета Петровна
  • Игнатов Николай Анатольевич
  • Симоненко Николай Петрович
  • Ежов Юрий Степанович
RU2333888C1

Реферат патента 2005 года СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНЕЙ-НАКОПИТЕЛЕЙ

Изобретение относится к области атомной техники. Сущность изобретения: способ изготовления мишеней-накопителей трансплутониевых элементов заключается в том, что прессуют пористую матрицу и производят термообработку ее в вакууме. Далее, пропитывают матрицу легколетучей органической жидкостью с температурой кипения 30-80°С при температуре ниже кипения, нагревают матрицу в объеме экстракта стартового элемента в высокомолекулярной изомерной карбоновой кислоте до полного выкипания легколетучей жидкости. Затем охлаждают матрицу в экстракте до 20-30°С с выдержкой при этой температуре 30-60 минут. Термообработку в инертной или вакуумной атмосфере при 450-600°С осуществляют для удаления органической составляющей экстракта и фиксации стартового элемента в объеме пористой матрицы. Преимущества изобретения заключаются в равномерности распределения стартового элемента в объеме матрицы, а также в уменьшении радиационной опасности процесса изготовления мишени. 2 табл.

Формула изобретения RU 2 248 056 C2

Способ изготовления мишеней-накопителей трансплутониевых элементов, заключающийся в том, что прессуют пористую матрицу, термообрабатывают ее в вакууме, пропитывают матрицу легколетучей органической жидкостью с температурой кипения 30-80°С при температуре ниже кипения, нагревают матрицу в объеме экстракта стартового элемента в высокомолекулярной изомерной карбоновой кислоте до полного выкипания легколетучей жидкости, охлаждают матрицу в экстракте до 20-30°С с выдержкой при этой температуре 30-60 мин, а удаление органической составляющей экстракта и фиксацию стартового элемента в объеме пористой матрицы осуществляют термообработкой в инертной или вакуумной атмосфере при 450-600°С.

Документы, цитированные в отчете о поиске Патент 2005 года RU2248056C2

ДАВИДЕНКО В.А
и др
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
RU 21176418 C1, 27.11.2001
СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНИ ДЛЯ ОБЛУЧЕНИЯ В РЕАКТОРЕ 2001
  • Лебедев В.М.
  • Андреев В.П.
  • Топоров Ю.Г.
  • Ядовин А.А.
RU2192678C1
US 4839133 А, 13.06.1989
Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания 1917
  • Латышев И.И.
SU96A1

RU 2 248 056 C2

Авторы

Лебедев В.М.

Топоров Ю.Г.

Даты

2005-03-10Публикация

2003-02-10Подача