ТЕПЛОАККУМУЛИРУЮЩИЙ СОСТАВ ДЛЯ ЗАПОЛНЕНИЯ МЕДНЫХ КАПСУЛ НА ОСНОВЕ ОКТАГИДРАТА ГИДРОКСИДА БАРИЯ Российский патент 2005 года по МПК C09K5/06 

Описание патента на изобретение RU2250245C2

Изобретение относится к веществам для передачи тепла за счет изменения фазового состояния и может быть использовано в устройствах, потребляющих теплоту при неравномерном ее получении или расходовании, в частности в системе предпусковой подготовки транспортных средств и силовых установок.

Известен аккумулятор теплоты, содержащий теплоаккумулирующие металлические капсулы, которые заполнены октагидратом гидроксида бария, изменяющим свое агрегатное состояние при температуре плавления 78° С в интервале рабочих температур аккумулятора теплоты (см. Патент РФ №2052734, кл. F 24 Н 7/00 //Бюл. изобр. №2, 20.01.1996).

Недостатками октагидрата гидроксида бария при использовании его в качестве теплоаккумулирующего состава в известном аккумуляторе теплоты являются повышенная коррозионная активность по отношению к металлическим стенкам капсулы, что значительно сокращает срок службы и надежность изделия, а также повышенная токсичность растворенных соединений бария, проявляющаяся при разгерметизации металлических капсул в результате коррозии, что отрицательно сказывается на состоянии окружающей среды и здоровье обслуживающего персонала.

Известно также, что разбавление октагидрата гидроксида бария нитратами калия (стехиометрическая смесь содержит 61% октагидрата) несколько уменьшает коррозию (см. Резницкий Л.А. Тепловые аккумуляторы. М., 1996, 93 с.). Однако, при этом значительно (примерно на 33,5%) уменьшается и общая теплота плавления раствора, что делает экономически невыгодным применение этих смесей в качестве теплоаккумулирующего состава.

Наиболее близким к предлагаемому составу по технической сущности и достигаемому результату является октагидрат гидроксида бария, которым заполняют медные герметичные пластины теплового аккумулятора автомобиля (см. Тепловой аккумулятор. Тольятти: ВАЗ. Научно-Технический Центр. Экспресс-информация №4, 23.02.1993).

Медь обладает лучшей теплопроводностью, чем сталь и более стойка к коррозии. Однако, использование меди для изготовления теплоаккумулирующих капсул полностью не устраняет коррозию в среде октагидрата гидроксида бария и сохраняет опасность разгерметизации капсул в процессе эксплуатации аккумулятора теплоты.

Целью изобретения является уменьшение коррозионной активности теплоаккумулирующего устройства на основе октагидрата гидроксида бария по отношению к медным стенкам аккумулятора теплоты.

Поставленная цель достигается за счет того, что теплоаккумулирующий состав на основе октагидрата гидроксида бария, заполняющий медные капсулы аккумулятора теплоты, дополнительно содержит сульфит натрия при следующем соотношении ингредиентов, мас.%:

Октагидрат гидроксида бария 99,0-99,5

Сульфит натрия 0,5-1,0

При решении поставленной задачи создается результат, который заключается в том, что предлагаемый теплоаккумулирующий состав (ТАС) для заполнения медных капсул содержит сульфит натрия, выполняющий роль ингибитора коррозии.

Коррозия меди как электроположительного металла в щелочных растворах идет в соответствии с реакциями (см. Томашов Н.Д., Чернов Г.П. Теория коррозии и коррозионно-стойкие конструкционные сплавы. М. - Л.: Химия, 1993, 329 с.):

с дальнейшим окислением

или непосредственно

Образовавшиеся соединения меди могут растворяться в горячей щелочи с образованием купратов:

Медь корродирует в щелочной среде по схеме с кислородной деполяризацией:

причем деполяризатором является молекулярный кислород воздуха, растворенный в теплоаккумулирующем составе.

Суммарный коррозионный электрохимический процесс может быть описан в виде следующих сопряженных реакций:

(анодный процесс)

(катодный процесс)

Скорость катодного процесса в герметичном замкнутом пространстве капсулы мала вследствие малой концентрации кислорода в растворе (~10-4 моль/л) и отсутствия его поступления из воздуха. Это и лимитирует скорость коррозии как сопряженной реакции.

Коррозионный процесс такого рода практически полностью прекращается при добавлении в ТАС 0,5-1,0 мас.% сульфита натрия, связывающего молекулярно растворенный кислород:

При этом следует учитывать, что медь должна иметь высокую степень чистоты, а также нельзя использовать другие металлы при сварке и склеивании швов капсулы с ТАС. Иначе вследствие образования локальных гальванических элементов типа “Сu - металл” коррозия меди может резко возрасти со всеми негативными последствиями, в том числе и выделением водорода.

Пример. Медные цилиндрические капсулы длиной 130 мм, внутренним диаметром 14 мм и толщиной стенок 1,0 мм заполняют жидким октагидратом гидроксида бария (Ва(ОH)2·8H2O) с необходимым количеством антикоррозионной присадки сульфита натрия (Na2SO3). Затем концы капсул сплющивают и заваривают. Полученные капсулы в количестве по 10 штук для каждого состава подвергают длительному термоциклированию на специальной установке, обеспечивающей по заданной программе нагрев образцов до 130±5° С и охлаждение до минус 10±5° С. Температура плавления Ва(ОН)2·8H2O, Tпл=78° С. После 500 циклов содержимое каждых 10 капсул перемешивают и подвергают анализу на содержание меди в теплоаккумулирующем составе (ТАС) фотометрическим методом. Кроме того, на установке для низкотемпературного дифференциального термического анализа (ДТА) определяют теплоту плавления исследуемых ТАС до и после термоциклирования в режиме линейного повышения температуры со скоростью 0,5° С/мин. При этом используют фиксированные количества пробы ТАС и стандартного вещества сравнения с известными теплофизическими свойствами. Теплоту плавления определяют по формуле

где Δ H1 и W1 - теплота плавления и масса исследуемого ТАС;

Δ H2 и W2 - теплота плавления и масса стандартного вещества сравнения (стеариновая кислота Δ Hпл=199,3 Дж/г, Tпл=71,5° С);

Q1 и Q2 - площади, ограниченные термограммами (изменение температуры во времени), исследуемого ТАС и стеариновой кислоты соответственно.

Состав и свойства предложенного и известного технического решения представлены в таблице “Сравнительные данные экспериментальной проверки известного и предлагаемого ТАС”.

ТаблицаСравнительные данные экспериментальной проверки известного и предлагаемого ТАСТеплоаккмулирующий составСодержание компонентов, масс.%Теплота плавления, Дж/гМасса меди в ТАС, г Ва(ОН)2·2ONa2SO3До термоциклированияПосле термоциклирования Предлагаемый99,50,5296,3275,3-991,0293,6273,2-Запредельный99,80,2297,8276,0следы98,51.5288,7267,1-Известный100,0-299,2278,63,03· 10-3

Как видно из приведенных в таблице данных, известный теплоаккумулирующий состав содержит после термоциклирования 3,03· 10-3 г меди и, следовательно, вызывает коррозию медных стенок капсулы. Добавление 0,5-1,0 мас.% сульфита натрия в октагидрат гидроксида бария обеспечивает почти полное прекращение коррозии медных стенок при очень незначительном уменьшении теплоты плавления (не более чем на 2,0%) по отношению к известному ТАС - Ва(ОН)2·2O. Уменьшение содержания Na2SO3 в ТАС меньше 0,5 мас.%, например до 0,2 мас.% нецелесообразно, так как вызывает появление коррозии стенок капсулы и результаты анализа ТАС после термоциклирования фиксируют наличие следов растворенной меди. Увеличение содержания Na2SO3 в ТАС свыше 1,0 мас.%, например до 1,5 мас.%, также нецелесообразно, так как приводит к более значительному уменьшению теплоты плавления ТАС (более 4,0%) после термоциклирования.

Использование предлагаемого теплоаккумулирующего состава на основе октагидрата гидроксида бария с добавлением 0,5-1,0 мас.% сульфита натрия для заполнения медных капсул аккумуляторов тепла позволяет уменьшить коррозионную активность ТАС и значительно улучшить эксплуатационные характеристики аккумулятора тепла, включая срок безотказной работы изделия и уменьшение токсичных выбросов ТАС при разгерметизации капсул в результате коррозии.

Похожие патенты RU2250245C2

название год авторы номер документа
АККУМУЛЯТОР ТЕПЛОТЫ 1996
  • Чечин А.В.
  • Пушкин В.И.
  • Брук С.Г.
  • Гуртов А.С.
  • Филатов А.Н.
  • Фомакин В.Н.
  • Чесноков Г.Т.
RU2121630C1
АККУМУЛЯТОР ТЕПЛОТЫ 1997
  • Чечин А.В.
  • Мирошник Г.Н.
  • Пушкин В.И.
  • Шапаринский А.С.
  • Михеев В.И.
  • Гуртов А.С.
  • Филатов А.Н.
  • Фомакин В.Н.
  • Чесноков Г.Т.
  • Устинов Ю.А.
  • Китаев А.И.
  • Фролов А.А.
  • Струихин В.Ф.
RU2145404C1
АККУМУЛЯТОР ТЕПЛОТЫ 1997
  • Чечин А.В.
  • Яременко Ю.В.
  • Пушкин В.И.
  • Михеев В.И.
  • Фомакин В.Н.
  • Чесноков Г.Т.
  • Калакутский В.И.
  • Портных А.Н.
RU2121631C1
ТЕПЛОВОЙ АККУМУЛЯТОР 1994
  • Овчинников Игорь Геннадьевич
RU2117881C1
АККУМУЛЯТОР ТЕПЛОТЫ 2001
  • Гуртов А.С.
  • Мирошник Г.Н.
  • Михеев В.И.
  • Пушкин В.И.
  • Струихин В.Ф.
  • Филатов А.Н.
  • Фролов А.А.
  • Чесноков Г.Т.
  • Чечин А.В.
  • Шапаринский А.С.
RU2215948C2
АККУМУЛЯТОР ТЕПЛОТЫ 1995
  • Чечин А.В.
  • Пушкин В.И.
  • Фомакин В.Н.
  • Гуртов А.С.
  • Михеев В.И.
  • Борисов С.Ю.
  • Чесноков Г.Т.
  • Трушков В.Г.
RU2122162C1
АККУМУЛЯТОР ТЕПЛОТЫ 2001
  • Чечин А.В.
  • Пушкин В.И.
  • Гуртов А.С.
  • Фомакин В.Н.
  • Михеев В.И.
  • Китаев А.И.
  • Чесноков Г.Т.
RU2206836C2
ТЕПЛОАККУМУЛИРУЮЩИЙ СОСТАВ 2023
  • Бабаев Баба Джабраилович
RU2810251C1
СПОСОБ ТЕРМОРЕГУЛИРОВАНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ 1992
  • Николаев Юрий Вячеславович
  • Кучеров Рафаил Яковлевич
  • Гординский Владимир Львович
  • Голубев Михаил Павлович
  • Суганеев Виктор Сергеевич
  • Сапелкин Валерий Сергеевич
RU2031491C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ ОТХОДОВ 2003
  • Кудрявский Ю.П.
  • Зильберман М.В.
  • Шенфельд Б.Е.
  • Черный С.А.
  • Рахимова О.В.
RU2258752C2

Реферат патента 2005 года ТЕПЛОАККУМУЛИРУЮЩИЙ СОСТАВ ДЛЯ ЗАПОЛНЕНИЯ МЕДНЫХ КАПСУЛ НА ОСНОВЕ ОКТАГИДРАТА ГИДРОКСИДА БАРИЯ

Изобретение относится к веществам для передачи тепла за счет изменения фазового состояния теплоаккумулирующего состава в устройствах, потребляющих теплоту при неравномерном ее получении или расходовании, в частности в системе предпусковой подготовки транспортных средств и их силовых установок. Теплоаккумулирующий состав содержит, мас.%: 99-99,5 октагидрата гидроксида бария, 0,5-1,0 сульфита натрия. Использование состава позволяет уменьшить коррозионную активность и значительно улучшить эксплуатационные характеристики аккумулятора тепла. 1 табл.

Формула изобретения RU 2 250 245 C2

Теплоаккумулирующий состав для заполнения медных капсул на основе октагидрата гидроксида бария, отличающийся тем, что он содержит сульфит натрия при следующем соотношении ингредиентов, мас.%:

Октагидрат гидроксида бария 99-99,5

Сульфит натрия 0,5-1,0

Документы, цитированные в отчете о поиске Патент 2005 года RU2250245C2

Тепловой аккумулятор
Тольятти: ВАЗ
Научно-Технический Центр
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб 1921
  • Игнатенко Ф.Я.
  • Смирнов Е.П.
SU23A1
Л.А.Резницкий
Тепловые аккумуляторы
Предохранительное устройство для паровых котлов, работающих на нефти 1922
  • Купцов Г.А.
SU1996A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
АККУМУЛЯТОР ТЕПЛОТЫ 1997
  • Чечин А.В.
  • Мирошник Г.Н.
  • Пушкин В.И.
  • Шапаринский А.С.
  • Михеев В.И.
  • Гуртов А.С.
  • Филатов А.Н.
  • Фомакин В.Н.
  • Чесноков Г.Т.
  • Устинов Ю.А.
  • Китаев А.И.
  • Фролов А.А.
  • Струихин В.Ф.
RU2145404C1
US 4426307, 17.01.1984.

RU 2 250 245 C2

Авторы

Онучак Л.А.

Арутюнов Ю.И.

Егорова К.В.

Кудряшов С.Ю.

Астров В.И.

Даты

2005-04-20Публикация

2003-05-05Подача