ЖАРОПРОЧНЫЙ СВАРИВАЕМЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО Российский патент 2005 года по МПК C22C19/05 

Описание патента на изобретение RU2256717C1

Изобретение относится к области металлургии жаропрочных свариваемых сплавов на основе никеля и изделий, выполняемых из этих сплавов для авиационной техники, машиностроения и других отраслей народного хозяйства, и может быть использовано для изготовления корпусов, кожухов, экранов, опор подшипника и других сварных узлов и деталей, работающих при температурах до 900°С.

Основными требованиями, предъявляемыми к этому классу материалов, является высокий уровень прочностных характеристик как кратковременных, так и длительных, в области рабочих температур в сочетании с удовлетворительным уровнем пластичности, обеспечивающий надежную работу изделий из предлагаемого сплава, отсутствие провала пластичности и чувствительности к концентраторам напряжений, а также хорошие свариваемость и жаростойкость.

Удовлетворение этих условий позволит снизить вес изделий, увеличить их ресурс и весовую отдачу.

Известны сплавы на никелевой основе следующего химического состава, мас.%:

1. Хром - 16÷20

Кобальт - 8÷14

Молибден - 2÷4

Алюминий - 0,2÷0,9

Титан - 0,5÷1,5

Тантал - 3,5÷4,5

Ниобий - 3,5÷4,5

Углерод - 0÷0,05

Бор - 0,002÷0,015

Никель - остальное

(патент Германии №3921626)

2. Углерод<0,05

Кремний - <0,5

Марганец -<0,5

Железо - <5

Хром - 18-30

Молибден - 1,5-7,0

Тантал+Ниобий<5

Титан<2

Алюминий<2

Никель - остальное.

Ta+1,9Nb+3,8Ti+6,7Al≤14

(заявка Японии №60744)

Данные сплавы имеют низкую пластичность в области температур 650-800°С и чувствительны к концентраторам напряжений. Их рабочие температуры ограничены ~750°С. При более высоких температурах прочностные характеристики этих сплавов не соответствуют требованиям, предъявляемым к силовым деталям ГТД, что не позволяет использовать их в двигателях нового поколения.

Наиболее близким по составу и назначению к предлагаемому сплаву является сплав следующего химического состава, мас.%:

Углерод - 0,04÷0,10

Хром - 14,0÷22,0

Молибден - 3,0÷8,0

Ниобий - 1,0÷3,0

Алюминий - 0,7÷2,2

Титан – 0,7÷2,0

Ванадий - 0,3÷1,2

Цирконий - 2,0÷4,0

Бор - 0,0003÷0,008

Магний - 0,003÷0,06

Иттрий - 0,003÷0,08

Никель - остальное

(патент СССР №1827120)

Недостатком этого сплава является интенсивное снижение значений длительной прочности на базе испытания более ста часов, что связано с излишним содержанием циркония, который в таком количестве образует интерметаллидные фазы, вызывающие эффект сверхпластичности.

Недостаточна высока и кратковременная прочность сплава как следствие заниженного содержания ниобия.

Другим недостатком прототипа являются ограниченные значения жаростойкости. Изготовленные из этого сплава изделия будут обладать ограниченными значениями ресурса и надежности

Технической задачей предлагаемого изобретения является разработка сплава, обладающего высоким уровнем прочностных характеристик как кратковременных, так и длительных, в области рабочих температур до 900°С в сочетании с удовлетворительным уровнем пластичности, обеспечивающим надежную работу изделий из предлагаемого сплава, отсутствие провала пластичности и чувствительности к концентраторам напряжений. Одновременно сплав должен обладать высокими характеристиками свариваемости и жаростойкости. Для решения поставленной задачи предлагается жаропрочный свариваемый сплав на основе никеля, содержащий углерод, хром, молибден, ниобий, алюминий, титан, цирконий, бор, магний, отличающийся тем, что он дополнительно содержит кобальт, вольфрам, лантан при следующим соотношении компонентов, мас.%:

Углерод - 0,02÷0,10

Хром - 12,0÷20,0

Кобальт - 8,0÷20,0

Молибден - 3,5÷7,0

Вольфрам - 0,5÷3,0

Ниобий - 3,2÷6,5

Алюминий - 1,0÷1,8

Титан - 1,0÷1,6

Цирконий - 0,4÷1,4

Бор - 0,0001÷0,006

Магний - 0,003÷0,06

Лантан 0,003÷0,08

Никель - остальное

и изделие, выполненное из него.

Введение в состав предлагаемого сплава кобальта позволяет повысить как жаропрочные (максимальная температура работы, длительная прочность и т.д.), так и технологические (свариваемость и технологическая пластичность) свойства материала.

Вольфрам также повышает жаропрочность сплава за счет дополнительного легирования γ-твердого раствора и усложнения его электронной структуры.

Дополнительное легирование сплава лантаном улучшает качество окисной плены, в состав которой входят его окислы, повышая его жаростойкость, и уменьшает дефектность границ зерен, улучшая тем самым показатели жаропрочности в верхнем районе рабочих температур и технологическую пластичность сплава.

Ограничение содержания циркония в пределах 0,4-1,4% позволяет за счет образования мелкодисперсных монокарбидов и оптимизации химического состава γ’-фазы обеспечить наряду с высокой прочностью требуемый уровень пластичности сплава, исключить чувствительность к концентрации напряжений.

При таком содержании циркония не проявляется эффект сверхпластичности, снижающий характеристики длительной прочности.

Повышение содержания ниобия в заявленных пределах (3,2-6,5) позволяет через увеличение рассогласования параметров решеток γ- и γ’-фаз и соответственно повышения уровня структурных напряжений в матрице, обеспечить высокие значения характеристик прочности.

Повышение содержания ниобия дает возможность получить высокие характеристики прочности при ограниченном количестве основных γ’-образующих элементов - алюминия и титана, что обеспечивает хорошую свариваемость сплава, чему способствует также низкая диффузионная подвижность атомов ниобия (медленное старение).

Использование нового сплава в качестве материала корпусов, кожухов и др. сварных узлов перспективных изделий пятого и шестого поколения позволит снизить их вес, увеличить ресурс и улучшить весовую отдачу.

Пример осуществления

Для практического осуществления изобретения в лабораторных условиях были выплавлены четыре вакуумных индукционных плавки предлагаемого сплава (примеры 1-3) и сплава-прототипа (пример 4) (таблица 1).

Заливка металла плавок производилась в круглые металлические изложницы. Полученные слитки были обточены резцом по конусной поверхности “как чисто”, а затем от них отрезаны прибыльная и донные части по причине повышенной дефектности.

Полученные заготовки проковали на прессе “Блисс” на сутунки размером 40×100×Lмм и прутки 20 мм. После чего сутунки прострогали с поверхности и прокатали горячекатаные листы толщиной 2 мм. Горячекатаные листы отожгли при температуре 1020±10°С и подвергали щелочно-кислотному травлению поверхности. После травления листы прокатали на стане “Крупп” на холоднокатаные листы толщиной 1,0 мм, из которых на гильотинных ножницах нарезали заготовки под образцы.

Полученные образцы подвергли испытаниям на длительную и кратковременную прочность, пластичность, многоцикловую усталость, жаростойкость и свариваемость.

Результаты испытаний представлены в таблице 2.

Предлагаемый сплав превосходит сплав-прототип по всему комплексу свойств: кратковременной и длительной прочности, пластичности, многоцикловой усталости, жаростойкости и свариваемости, в противоположность сплаву-прототипу предлагаемый сплав не чувствителен к концентраторам напряжений.

Таким образом применение предлагаемого сплава позволит повысить весь комплекс прочностных характеристик элементов двигателя, таких как корпусов, теплозащитных экранов, кожухов опор подшипника и других сварных узлов, увеличить ресурс и надежность двигателей ГТД, ГТУ.

Таблица 1
Химический состав опытных плавок предлагаемого сплава, и сплава-прототипа (масс%).
Хим. эл-т № пл.ССчСоМоWNbАlTiZrVвMgLaYNi10,0212,08,03,50,53,21,01,00,4-0,00010,0030,003-Ост.20,0616,215,85,21,74,81,41,30,9-0,0030,030,04-Ост.30,1020,020,07,03,06,51,81,61,4-0,0060,060,08-Ост.40,0717,1-5,6-2,01,41,43,03,00,0010,01-0,015Ост.

Таблица 2
Результаты сравнительного испытания свойств опытных плавок предлагаемого сплава, и сплава-прототипа
Свойства № пл.Тσв20σ0,220δ520σ100σ-1 на базе 2·107Vкрq°СКгс/мм2%Кгс/мм2-Кгс/ мм2MM/ минг/ м2час120135,7100,529,5      136,9102,430,2-     134,6100,832,6 >1455,80,115600---96,0    700---61,5    900---15,0    220140,0105,024,6      138,7103,827,9-     140,3106,428,1 >1465,60,110600---97,0    700---63,0    900---17,0    320143,6108,224,8      141,9106,426,5-     144,5110,123,4 >1445,50,100600---96,5    700---62,0    900---16,5    420127,394,818,2      128,495,316,8-     130,696,215,4 1<375,00,185600---86,0    700---57,5    900---6,0    

Т - температура испытания;

σв - предел прочности;

σ0,2 - предел текучести;

δ - относительное удлинение;

σ100 - предел сточасовой длительной прочности;

σ100н - предел сточасовой длительной прочности образца с надрезом (rн=0,15 мм);

σ-1 - предел выносливости;

Vkp - критическая скорость деформации в сварном шве;

q - жаростойкость по привесу при 1000°С за 100 час.

Похожие патенты RU2256717C1

название год авторы номер документа
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2005
  • Латышев Владимир Борисович
  • Каблов Евгений Николаевич
RU2285059C1
ЖАРОПРОЧНЫЙ СВАРИВАЕМЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2005
  • Латышев Владимир Борисович
  • Моисеев Станислав Александрович
  • Каблов Евгений Николаевич
  • Ломберг Борис Самуилович
  • Овченкова Ирина Ивановна
RU2301277C1
Жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него 2021
  • Каблов Евгений Николаевич
  • Мазалов Иван Сергеевич
  • Ломберг Борис Самуилович
  • Расторгуева Ольга Игоревна
  • Ахмедзянов Максим Вадимович
RU2777099C1
Сплав на основе кобальта 2021
  • Каблов Евгений Николаевич
  • Оспенникова Ольга Геннадиевна
  • Неруш Святослав Васильевич
  • Мазалов Павел Борисович
  • Мазалов Иван Сергеевич
  • Сухов Дмитрий Игоревич
  • Рогалев Алексей Михайлович
  • Сульянова Елена Александровна
RU2767961C1
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2010
  • Поварова Кира Борисовна
  • Базылева Ольга Анатольевна
  • Дроздов Андрей Александрович
  • Казанская Надежда Константиновна
  • Морозов Алексей Евгеньевич
  • Самсонова Марина Анатольевна
RU2433196C1
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2014
  • Каблов Евгений Николаевич
  • Бакрадзе Михаил Михайлович
  • Ломберг Борис Самуилович
  • Овсепян Сергей Вячеславович
  • Лимонова Елена Николаевна
  • Чабина Елена Борисовна
  • Филонова Елена Владимировна
  • Хвацкий Константин Константинович
RU2571674C1
ЖАРОПРОЧНЫЙ СВАРИВАЕМЫЙ СПЛАВ НА ОСНОВЕ КОБАЛЬТА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Ахмедзянов Максим Вадимович
  • Овсепян Сергей Вячеславович
  • Мазалов Иван Сергеевич
  • Ломберг Борис Самуилович
  • Расторгуева Ольга Игоревна
  • Князев Денис Михайлович
RU2601720C1
ЖАРОПРОЧНЫЙ ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2022
  • Мин Павел Георгиевич
  • Вадеев Виталий Евгеньевич
  • Мин Максим Георгиевич
  • Антипов Владислав Валерьевич
  • Бакрадзе Михаил Михайлович
  • Князев Андрей Евгеньевич
  • Дядько Кирилл Владимирович
RU2794496C1
Жаропрочный сплав 2019
  • Афанасьев Сергей Васильевич
  • Исмайлов Олег Захидович
  • Пыркин Александр Валерьевич
RU2700347C1
ЛИТЕЙНЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2010
  • Петрушин Николай Васильевич
  • Оспенникова Ольга Геннадиевна
  • Митрушкин Алексей Анатольевич
  • Рассохина Лидия Ивановна
RU2434069C1

Реферат патента 2005 года ЖАРОПРОЧНЫЙ СВАРИВАЕМЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Изобретение относится к области металлургии, а именно к жаропрочным свариваемым сплавам на основе никеля, предназначены для изготовления корпусов, кожухов, теплозащитных экранов и других сварных узлов и деталей, работающих при температурах до 900°С. Предложен жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него. Сплав содержит углерод, хром, молибден, ниобий, алюминий, титан, цирконий, бор и магний, при этом он дополнительно содержит кобальт, вольфрам и лантан при следующем соотношении компонентов, мас.%: углерод - 0,02-0,10, хром - 12,0-20,0, кобальт - 8,0-20,0, молибден - 3,5-7,0, вольфрам - 0,5-3,0, ниобий - 3,2-6,5, алюминий - 1,0-1,8, титан - 1,0-1,6, цирконий - 0,4-1,4, бор - 0,0001-0,006, магний - 0,003-0,06, лантан - 0,003-0,08, никель - остальное. Технический результат - повышение прочностных характеристик сплава в области рабочих температур в сочетании с удовлетворительным уровнем пластичности, обеспечивающим отсутствие провала пластичности и чувствительности к концентраторам напряжений, а также с удовлетворительными характеристиками свариваемости и жаростойкости. 2 н.п. ф-лы, 2 табл.

Формула изобретения RU 2 256 717 C1

1. Жаропрочный свариваемый сплав на основе никеля, содержащий углерод, хром, молибден, ниобий, алюминий, титан, цирконий, бор и магний, отличающийся тем, что он дополнительно содержит кобальт, вольфрам и лантан при следующем соотношении компонентов, мас.%:

Углерод 0,02÷0,10

Хром 12,0÷20,0

Кобальт 8,0÷20,0

Молибден 3,5÷7,0

Вольфрам 0,5÷3,0

Ниобий 3,2÷6,5

Алюминий 1,0÷1,8

Титан 1,0÷1,6

Цирконий 0,4÷1,4

Бор 0,0001÷0,006

Магний 0,003÷0,06

Лантан 0,003÷0,08

Никель Остальное

2. Изделие из жаропрочного свариваемого сплава на основе никеля, отличающееся тем, что оно выполнено из сплава по п.1.

Документы, цитированные в отчете о поиске Патент 2005 года RU2256717C1

ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1991
  • Латышев В.Б.
  • Блюмкина О.В.
  • Моисеев С.А.
  • Булавина Л.С.
  • Каблов Е.Н.
  • Тюренков А.Д.
  • Николаев Н.Н.
  • Сисев А.А.
  • Сорокин Л.И.
  • Тупикин В.И.
  • Аксенов Б.Н.
  • Мелькумов И.Н.
SU1827120A3
RU 99111621 А, 27.04.2001
ЖАРОПРОЧНЫЙ СВАРИВАЕМЫЙ СПЛАВ НА НИКЕЛЕВОЙ ОСНОВЕ 1999
  • Пестов Ю.А.
  • Семенов В.Н.
  • Новиков В.И.
  • Козыков Б.А.
  • Недашковский К.И.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Каторгин Б.И.
  • Чванов В.К.
  • Степанов В.П.
  • Булавина Л.С.
  • Русинович Ю.И.
  • Расторгуева И.А.
RU2169783C2
Горелка для электродуговой сварки плавящимся электродом в защитных газах 1975
  • Землевский Леонид Анатольевич
  • Лесков Григорий Илларионович
SU549286A1
DE 19536978 А1, 04.04.1996.

RU 2 256 717 C1

Авторы

Латышев В.Б.

Каблов Е.Н.

Моисеев С.А.

Даты

2005-07-20Публикация

2004-06-25Подача