СПОСОБ ДЕЦЕНТРАЛИЗОВАННОЙ ОБРАБОТКИ ДАННЫХ ИЗМЕРЕНИЙ ПРОЦЕССА РАЗЛИВКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2005 года по МПК B22D11/16 

Описание патента на изобретение RU2257281C2

Изобретение относится к способу и устройству для децентрализованной обработки данных измерений процесса разливки, полученных на кристаллизаторе с помощью датчиков, в управляющей вычислительной машине системы управления установкой для непрерывной разливки.

В установках для непрерывной разливки на кристаллизаторе располагают горизонтальные ряды термоэлементов и резистивных термоэлементов, каждый термопровод которых присоединен посредством двух выводов через коробки зажимов к так называемому магистральному кабелю. При наличии, например, 60 термоэлементов и 40 резистивных термоэлементов требуется 240 термопроводов, которые должны присоединяться к магистральному кабелю.

Сначала термопровода идут к датчикам. Магистральный кабель присоединен с помощью так называемой мультимуфты (муфта и ответная муфта) к источнику питания вне осциллирующего кристаллизатора на неподвижной части установки для непрерывной разливки, так называемой “твердой земле”. Все термопровода, коробки зажимов и магистральный кабель подвержены воздействию температур от 60 до 100°С. К тому же помимо жара возникают неизбежное при разливке загрязнение, например, брызгами шлака и, кроме того, влажность. Поскольку термоэлементы и резистивные термоэлементы работают с напряжениями в пределах 10-500 мВ, сказываются, кроме того, электромагнитные поля других органов на кристаллизаторе. Это выполнение обуславливает для различных узлов на кристаллизаторе (например, привода перемещения плит узких сторон, датчиков перемещения, позиций дистанционного управления для мест измерения температуры и т.д.) повышенное время замены, высокие монтажные затраты и высокие затраты на установку и прокладку кабельной линии, высокие материальные затраты и высокие затраты на техобслуживание.

Согласно уровню техники известно устройство для определения уровня зеркала расплава в кристаллизаторе (DE-OS 2655640). Эта конструкция предусматривает, однако, лишь средства для съемного монтажа детекторной коробки в водяной рубашке кристаллизатора и средства для впуска и выпуска охлаждающей воды для ее пропускания через детекторную коробку с целью охлаждения встроенной в нее электромагнитной катушки с защитным корпусом. Поэтому такое решение не может использоваться для расположенных на кристаллизаторе термоэлементов и резистивных термоэлементов. При этом способ измерения также иной.

В основе изобретения лежит задача обработки более эффективным электронным путем в том числе измеренных с помощью датчиков данных процесса разливки и за счет этого упрощения самого устройства.

Поставленная задача решается, согласно изобретению, за счет того, что данные измерений и управляющие данные собирают в охлаждаемых модулях с полевой шиной непосредственно на кристаллизаторе, передают в виде сигналов шины в линию шины и хранят и/или обрабатывают, по меньшей мере, в системе управления установкой для непрерывной разливки стали. За счет этого значительно сокращается и упрощается маршрут данных, а также упрощается устройство, как это ниже поясняется более подробно. Предпочтительным является, в частности, отсоединение или присоединение только вывода в находящейся на “твердой земле” коробке зажимов, так что время замены значительно сокращается, затраты на установку и прокладку кабеля уменьшаются, материальные затраты сокращаются, затраты на техобслуживание уменьшаются, за счет чего можно значительно повысить выход стали. Обработка данных может происходить также в самом модуле с полевой шиной или даже через Интернет с глобальным подключением. При этом можно зарегистрировать данные от датчиков или исполнительных механизмов, а именно от датчиков вращения, датчиков измерения углов (так называемых инклинометров), насосов, расходомеров, управляемых клапанов, электродвигателей и т.п.

Согласно предпочтительной форме выполнения изобретения зарегистрированные данные измерений или дополнительно введенные специфичные данные передают по линиям шин в качестве управляющих сигналов к исполнительным органам и/или исполнительным механизмам в зоне кристаллизатора. За счет этого можно использовать систему так же активно для управления или регулирования процесса разливки.

Другое преимущество возникает за счет того, что в модулях с полевой шиной на кристаллизаторе с возможностью запроса хранится специальная информация о толщине медных плит, степени износа, состоянии термодатчиков и/или резистивных термодатчиков и циклах техобслуживания.

Согласно еще одному усовершенствованию изобретения обмен данными и энергоснабжение осуществляют, по меньшей мере, между модулями с полевой шиной и управляющей вычислительной машиной через гибридное соединение. За счет этого можно направлять в одном электрическом проводнике как потоки данных, так и потоки энергии.

Согласно еще одному выполнению гибридное соединение образовано шиной связи и источником энергоснабжения. Все потоки протекают при этом по единственному гибридному кабелю.

Предпочтительно далее, что гибридное соединение эксплуатируют в присутствии охлаждающей среды. При этом для охлаждения можно использовать также охлаждающую воду кристаллизатора. Возможно также применение охлаждающего средства, подводимого извне (газ или жидкость).

Устройство для децентрализованной обработки данных измерений процесса разливки, полученных на кристаллизаторе с помощью датчиков, в управляющей вычислительной машине системы управления установкой для непрерывной разливки решает поставленную задачу, согласно изобретению, за счет того что непосредственно на кристаллизаторе установлено несколько связанных с датчиками и/или исполнительными механизмами модулей с полевой шиной, которые снабжены охлаждением. За счет этого все датчики на кристаллизаторе могут быть соединены кабелем с децентрализованными датчиками непосредственно через короткий сигнальный провод. Такие модули с полевой шиной находятся тогда непосредственно вблизи датчиков.

Охлаждение может осуществляться различными вариантами. Наиболее простым способом модули с полевой шиной могут охлаждаться потоком имеющегося в кристаллизаторе охлаждающего средства. За счет этого снижаются дополнительные затраты.

Согласно другому варианту модули с полевой шиной заключены в охлаждаемый защитный корпус. Здесь целесообразен подвод охлаждения извне с исключением влаги в подаваемой охлаждающей среде.

Доступа влаги и независимости влагосодержания от воздуха можно достичь, согласно другим признакам, за счет того что в защитный корпус встроен также кондиционер для охлаждения.

Другое усовершенствование изобретения состоит в том, что шина связи физически образована электрической или электронной проводной техникой, световодной техникой или беспроволочной техникой передачи.

Далее предусмотрено, что беспроволочная техника передачи состоит из радиопередачи или образована на основе инфракрасного излучения.

Согласно еще одному усовершенствованию изобретения посредством потока охлаждающего средства в кристаллизаторе можно приводить генератор, который снабжает электроприводные органы кристаллизатора. Энергоподвод для генератора состоит в энергии потока охлаждающей воды.

Один вариант этого состоит в том, что приводное движение для генератора производят из осциллирующего движения кристаллизатора.

Ниже изобретение поясняется более подробно на примере выполнения изобретения, показанного на чертеже, где:

на фиг.1 изображена блок-схема кристаллизатора с модулями с полевой шиной;

фиг.2 - вид сверху на кристаллизатор с модулями с полевой шиной;

фиг.3 - вид сбоку фиг.2;

фиг.4 - перспективный вид водяной коробки кристаллизатора.

Способ децентрализованной обработки данных измерений процесса разливки, полученных на кристаллизаторе 1 с помощью термодатчиков или резистивных термодатчиков 10, в управляющей вычислительной машине 11 с резервным выводом 11а системы управления установкой для непрерывной разливки (фиг.1) осуществляют таким образом, что данные измерений, полученные от множества распределенных на кристаллизаторе 1 термодатчиков и/или резистивных термодатчиков 10, собирают в охлаждаемом модуле 2 с полевой шиной непосредственно на кристаллизаторе 1, передают в виде сигналов шины в линию 3 шины и хранят или обрабатывают в системе управления установкой для непрерывной разливки. При этом зарегистрированные данные измерений или дополнительно введенные специфичные данные передают по единственной линии 3 шины в качестве управляющих сигналов к исполнительным органам и/или исполнительным механизмам в зоне кристаллизатора 1. В качестве исполнительных органов служат, например, медные плиты 4 в виде плит узких сторон, а исполнительные механизмы служат их соответствующими приводами. Специфическая информация о кристаллизаторе касается, например, толщины медных плит, степени износа, состояния термодатчиков или резистивных термодатчиков 10, а также циклов техобслуживания.

На фиг.1 обмен данными происходит через линии 3 шин и коробку 5 зажимов с трансформатором между модулями 2 с полевой шиной и управляющей вычислительной машиной 11 через гибридное соединение. Гибридное соединение образует гибридный кабель 6 с шиной 7 связи и энергоснабжением. Гибридный кабель 6 может эксплуатироваться тоже с охлаждением 8, как и модули 2 с полевой шиной. В принципе, в качестве охлаждения 8 для модулей 2 с полевой шиной может использоваться имеющийся поток 8 охлаждающего средства кристаллизатора.

Модули 2 с полевой шиной окружены охлаждающим защитным корпусом 9. В защитном корпусе 9, в случае необходимости, установлен отдельный кондиционер 12 (фиг.2 и 3). Защитный корпус 9 прилегает к кристаллизатору 1 или к водяной коробке 19, так что модули 2 с полевой шиной находятся на кратчайшем расстоянии от термодатчиков 10 и охлаждаются потоком 8а охлаждающего средства и/или кондиционером 12. То же относится к термопроводам 15, которые ведут в кабельных вводах 14 от термодатчиков 10 в модули 2 с полевой шиной.

На фиг.4 шина 7 связи физически образована электрической или электронной проводной техникой, или световодной техникой, или беспроволочной техникой передачи, причем беспроволочная техника передачи может быть образована радиопередачей 16 или на основе инфракрасных лучей.

Модули 2 с полевой шиной (дистанционный модуль) и приемопередающий модуль 20 расположены в качестве органов 18 с электроприводом на кристаллизаторе 1. Внутри направляющей 13 для охлаждающей воды расположен генератор 17, который посредством потока 8а охлаждающего средства вырабатывает ток и представляет собой источник 21 энергоснабжения для органов 18 с электроприводом.

Приводное движение для генератора 17 производят из осциллирующего движения кристаллизатора.

Перечень ссылочных позиций

1 - кристаллизатор

2 - модуль с полевой шиной

3 - линия шины

4 - медная плита

5 - коробка зажимов с трансформатором

6 - гибридный кабель

7 - шина связи

8 - охлаждение

8а - поток охлаждающего средства

9 - защитный корпус

10 - термодатчики, резистивные термодатчики

11 - управляющая вычислительная машина

11а - резервный вывод

12 - кондиционер

13 - направляющая для охлаждающей воды

14 - кабельный ввод

15 - термопровод

16 - радиопередача

17 - генератор

18 - орган с электроуправлением

19 - водяная коробка

20 - приемопередающий модуль

21 - источник энергоснабжения

Похожие патенты RU2257281C2

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ШИРИНЫ ПРИЕМНОГО ОТВЕРСТИЯ СЕГМЕНТОВ РОЛИКОВОЙ ПРОВОДКИ В УСТАНОВКАХ НЕПРЕРЫВНОЙ РАЗЛИВКИ 2002
  • Гееркенс Кристиан
  • Вейер Аксель
RU2283204C2
УСТАНОВКА НЕПРЕРЫВНОЙ РАЗЛИВКИ С КРИСТАЛЛИЗАТОРОМ ДЛЯ ЛИТЬЯ ЖИДКИХ МЕТАЛЛОВ, В ЧАСТНОСТИ СТАЛЬНЫХ МАТЕРИАЛОВ 2005
  • Вильмес Рональд
  • Классен Ханс Эзау
  • Думитриу Бужор
  • Хопп Пауль-Кристиан
  • Гееркенс Кристиан
RU2388574C2
УПРАВЛЯЮЩЕЕ И/ИЛИ РЕГУЛИРОВОЧНОЕ УСТРОЙСТВО ДЛЯ ПОДЪЕМНОГО СТОЛА, УДЕРЖИВАЮЩЕГО КРИСТАЛЛИЗАТОР УСТАНОВКИ НЕПРЕРЫВНОЙ РАЗЛИВКИ ЖИДКИХ МЕТАЛЛОВ, В ЧАСТНОСТИ ЖИДКОЙ СТАЛИ 2005
  • Вильмес Рональд
  • Классен Ханс Эзау
  • Думитриу Бужор
  • Хопп Пауль-Кристиан
  • Гееркенс Кристиан
RU2358829C2
УПРАВЛЯЮЩЕЕ И/ИЛИ РЕГУЛИРУЮЩЕЕ УСТРОЙСТВО ДЛЯ СИСТЕМЫ ОПОРНЫХ РОЛИКОВ В МАШИНЕ ДЛЯ НЕПРЕРЫВНОЙ РАЗЛИВКИ МЕТАЛЛОВ, В ЧАСТНОСТИ СТАЛЬНЫХ МАТЕРИАЛОВ 2005
  • Вильмес Рональд
  • Классен Ханс Эзау
  • Думитриу Бужор
  • Хопп Пауль-Кристиан
  • Гееркенс Кристиан
RU2353466C2
КРИСТАЛЛИЗАТОР ДЛЯ РАЗЛИВКИ МЕТАЛЛА 2009
  • Шульце Штефан
  • Лифтухт Дирк
  • Плоцинник Уве
RU2448804C1
Способ управления запуском установки непрерывной разливки металла 1985
  • Бернхард Тиннес
  • Хайнц Кройцберг
SU1528335A3
УСТАНОВКА ДЛЯ НЕПРЕРЫВНОЙ РАЗЛИВКИ, В ЧАСТНОСТИ, СТАЛЬНЫХ ДЛИННЫХ ЗАГОТОВОК, А ТАКЖЕ СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ 2008
  • Дратва Кристиан
  • Кава Франц
RU2457921C2
СИСТЕМА ДЛЯ МОДЕЛИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ 2003
  • Матвиенко О.Д.
  • Свечников Ю.К.
  • Солодкий А.М.
  • Тамыев А.Н.-О.
  • Червоненко В.Д.
RU2256208C2
Способ автоматического управления процессом непрерывной разливки металла 1973
  • Сорокин Леонид Иванович
  • Жуковский Станислав Иванович
SU620331A1
КРИВОЛИНЕЙНАЯ УСТАНОВКА ДЛЯ НЕПРЕРЫВНОЙ РАЗЛИВКИ СОРТОВЫХ ЗАГОТОВОК 2019
  • Злобин Анатолий Аркадьевич
RU2698005C1

Иллюстрации к изобретению RU 2 257 281 C2

Реферат патента 2005 года СПОСОБ ДЕЦЕНТРАЛИЗОВАННОЙ ОБРАБОТКИ ДАННЫХ ИЗМЕРЕНИЙ ПРОЦЕССА РАЗЛИВКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области непрерывной разливки металла. Технический результат - повышение эффективности обработки данных, измеренных с помощью датчиков в процессе разливки. Способ децентрализованной обработки данных измерений процесса разливки, полученных на кристаллизаторе с помощью датчиков, в управляющей вычислительной машине системы управления установкой для непрерывной разливки делает измерительный участок эффективнее и упрощает устройство за счет того, что данные измерений и управляющие данные собирают в охлаждаемых модулях с полевой шиной непосредственно на кристаллизаторе. Затем указанные данные передают в виде сигналов шины в линию шины и хранят и/или обрабатывают, по меньшей мере, в системе управления установкой для непрерывной разливки. 2 н. и 12 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 257 281 C2

1. Способ децентрализованной обработки данных измерений процесса разливки, полученных на кристаллизаторе с помощью датчиков, в управляющей вычислительной машине системы управления установкой для непрерывной разливки, отличающийся тем, что данные измерений и управляющие данные собирают в охлаждаемых модулях с полевой шиной непосредственно на кристаллизаторе, передают в виде сигналов шины в линию шины и хранят и/или обрабатывают, по меньшей мере, в системе управления установкой для непрерывной разливки.2. Способ по п.1, отличающийся тем, что зарегистрированные данные измерений или дополнительно введенные специфичные данные передают по линиям шин в качестве управляющих сигналов к исполнительным органам и/или исполнительным механизмам в зоне кристаллизатора.3. Способ по п.1 или 2, отличающийся тем, что в модулях с полевой шиной на кристаллизаторе с возможностью запроса хранят специфичную информацию о толщине медных плит, степени износа, состоянии термодатчиков и/или резистивных термодатчиков и циклах техобслуживания.4. Способ по любому из пп.1-3, отличающийся тем, что обмен данными и энергоснабжение осуществляют, по меньшей мере, между модулями с полевой шиной и управляющей вычислительной машиной через гибридное соединение.5. Способ по п.4, отличающийся тем, что гибридное соединение образуют из шины связи и источника энергоснабжения.6. Способ по п.5, отличающийся тем, что гибридное соединение эксплуатируют в присутствии охлаждающей среды.7. Устройство для децентрализованной обработки данных измерений процесса разливки, полученных с помощью датчиков на кристаллизаторе, в управляющей вычислительной машине системы управления установкой для непрерывной разливки, отличающееся тем, что непосредственно на кристаллизаторе установлено несколько связанных с датчиками и/или исполнительными механизмами модулей с полевой шиной, которые выполнены охлаждаемыми.8. Устройство по п.7, отличающееся тем, что модули с полевой шиной выполнены с возможностью охлаждения потоком, охлаждающим кристаллизатор.9. Устройство по любому из пп.7 и 8, отличающееся тем, что модули с полевой шиной заключены в охлаждаемый защитный корпус.10. Устройство по п.9, отличающееся тем, что в защитный корпус для охлаждения встроен также кондиционер.11. Устройство по любому из пп.7-10, отличающееся тем, что шина связи физически образована электрическими или электронными проводными средствами, световодными средствами или беспроволочными средствами передачи.12. Устройство по п.11, отличающееся тем, что беспроволочные средства передачи выполнены на основе радио или инфракрасного излучения.13. Устройство по любому из пп.7-12, отличающееся тем, что оно снабжено генератором, приводимым в движение потоком, охлаждающим кристаллизатор, для энергоснабжения органов с электроуправлением, установленных на кристаллизаторе.14. Устройство по любому из пп.7-12, отличающееся тем, что оно снабжено генератором, приводимым в движение за счет осциллирующего движения кристаллизатора, для энергоснабжения органов с электроуправлением, установленных на кристаллизаторе.

Документы, цитированные в отчете о поиске Патент 2005 года RU2257281C2

СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОВЫХ ПОТЕРЬ ПОМЕЩЕНИЯ 2014
  • Пандро Гийом
  • Альзетто Флоран
RU2655640C2
US 4126041 А, 21.11.1978
GB 1378158 А, 18.12.1974
DE 3436331 А, 17.04.1986
Устройство для взаимной блокировки двух абонентов 1939
  • Ершов И.И.
SU57627A1
Магнитодинамическая установка 1986
  • Борисов Борис Павлович
  • Полищук Виталий Петрович
  • Зубюк Юрий Павлович
  • Шнурко Владимир Кузьмич
  • Евтушенко Леонид Иванович
  • Хомутин Николай Иванович
SU1372630A1
СПОСОБ КОНТРОЛЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА НЕПРЕРЫВНОЙ РАЗЛИВКИ МЕТАЛЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Ляхов Геннадий Александрович
  • Минченко Александр Иванович
  • Резников Александр Евгеньевич
RU2015827C1

RU 2 257 281 C2

Авторы

Арцбергер Маттиас

Лангер Мартин

Дойссен Йозеф

Шмальц Вальтер

Паршат Лотар

Даты

2005-07-27Публикация

2001-05-26Подача