СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА МАСЛЯНЫХ АЛЬДЕГИДОВ Российский патент 2005 года по МПК C07C47/02 C07C45/50 

Описание патента на изобретение RU2258059C1

Настоящее изобретение относится к химии, нефтехимии, точнее к усовершенствованному способу получения концентрата масляных альдегидов оксосинтезом, включающему стадии приготовления катализатора гидроформилирования - карбонилов кобальта, гидроформилирования пропилена, отгонки концентрата масляных альдегидов от высококипящих побочных продуктов (ВПП) (Ганкин В.Ю., Гуревич Г.С. Технология оксосинтеза. Л. - Химия - 1981 - 272 с.).

Из литературы известен ряд патентов, в которых описаны приемы, имеющие целью усовершенствование процесса синтеза альдегидов гидроформилированием олефинов (Авт. свид. СССР №144165, опубл. Б.И. 1962, №2; пат. Англии №1458375, опубл. 15.12.76; пат. ФРГ № Р 34123350, опубл. 10.10.85; пат. Франции №2055962, опубл. 14.05.71, и др.).

Недостатком способов, описанных в указанных патентах, является отсутствие конкретных данных по основным технико-экономическим показателям их промышленной реализации, таких как конверсия, селективность, расходные нормы по сырью, реагентам, энергоносителям.

В отдельных источниках приводятся данные по конверсии пропилена и селективности его превращения в масляные альдегиды, полученные на лабораторных или малопроизводительных пилотных установках. Конверсия пропилена колеблется в интервале 85-90%, селективность - 76-88%.

В источнике («Chem. Eng.», 1976, v. 83, N 24, р.90-91) приведены промышленные расходные нормы по сырьевым компонентам процесса получения масляных альдегидов гидроформилированием пропилена - по пропилену 750 кг, по синтез-газу 740 нм3 на 1 т масляных альдегидов.

Необходимо отметить, что для процесса гидроформилирования олефинов характерно существенное расхождение в показателях, достигаемых на лабораторных пилотных установках, с данными, получаемыми на промышленных реакторах.

Так, в техническом проекте установки производства бутиловых спиртов гидрированием масляных альдегидов, получаемых гидроформилированием пропилена производительностью 170 тыс. т/год по бутиловым спиртам на Салаватском НХК, принятого в промышленную эксплуатацию в 1980 г., заложены расходные нормы, достигнутые на пилотной установке производительностью всего 6 тыс. т/год, а именно по пропилену 706 кг/т спиртов, по синтез-газу 946 нм3/т спиртов.

Однако обследование работы производства в 1984 г. показало, что фактические расходные нормы по пропилену и синтез-газу существенно выше проектных величин: по пропилену - 760 кг, по синтез-газу 1150 нм3 («Оказание научно-технической помощи производству бутиловых спиртов на ПО «Салаватнефтеоргсинтез» (цех №52) во внедрении научно-технических рекомендаций по усовершенствованию процесса и в достижении проектных показателей», Отчет №2863-85, тема №476-84 - заказ-наряд, № гос. регистрации 01840031432, Л., 1985 г., УДК 661. 725. 0316, см. выписку).

Аналогичные обследования, проведенные в 1997 и 2001 г., показали, что за счет ряда усовершенствований процесса расходная норма по пропилену была снижена всего до 746 кг, а расходная норма по синтез-газу осталась практически без изменения.

Такое значительное расхождение данных, полученных на пилотной и крупнотоннажной промышленной установках, связано с рядом специфических для процесса гидроформилирования факторов, которые невозможно учесть при масштабном переходе от показателей пилотной установки к показателям крупнотоннажной установки.

Наиболее близким по технической сущности к предлагаемому решению является способ получения масляных альдегидов и бутиловых спиртов оксосинтезом по нафтенатно-испарительной схеме, описанной в публикуемом источнике: «Технологический регламент (откорректированный), объект 1586, Установка 1 производства масляных альдегидов и бутиловых спиртов», пояснительная записка №1-2-220-пз, ВНИПИНЕФТЬ, Москва, 1976 г. - прототип, см. выписку из указанного источника в приложении к настоящему описанию).

Согласно способу-прототипу процесс гидроформилирования пропилена осуществляют в двух последовательно соединенных реакторах Р-103 и Р-104 при температуре 130-150°С, давлении 290-300 атм, расходе сжиженного пропилена 8429-8850 кг/час, синтез-газа 10550 -11100 нм3/час.

Тепло реакции (30 ккал/моль пропилена) снимается конденсатом водяного пара, который подается в трубки Фильда, встроенные в реакторы Р-103 и Р-104: расход конденсата в Р-103 составляет 120-126 м3/час, при этом конденсат нагревается от 95 до 115°С, расход конденсата в Р-104 составляет 95-105 м3/час, при этом конденсат нагревается от 115 до 135°С (каждый реактор имеет собственный контур теплосъема).

Недостатком способа-прототипа является недостаточно высокая конверсия и низкая селективность превращения пропилена в целевые масляные альдегиды.

Целью настоящего изобретения является повышение конверсии и селективности процесса гидроформилирования пропилена в масляные альдегиды и, соответственно, снижение расходных норм по пропилену и синтез-газу.

Опытные пробеги на пилотных и промышленной установках показали, что указанная цель достигается при получении концентрата масляных альдегидов методом гидроформилирования пропилена синтез-газом при температуре 120-150°С, давлении 250-300 кгс/см2 в двух последовательно соединенных реакторах с отводом тепла реакции циркуляцией хладагента через встроенные в реакторы трубки Фильда с последующей переработкой продуктов реакции известными методами, а отличительной особенностью предлагаемого настоящей заявкой способа является осуществление процесса гидроформилирования в первом реакторе в режиме, при котором соотношение объемных расходов хладагента, циркулирующего в трубках Фильда, и пропилена, подаваемого в реактор, составляет в интервале значений (18-28):1.

Необходимо отметить, что в соответствии с проектными данными и данными обследований работы промышленных реакторов гидроформилирования пропилена основное превращение пропилена в масляные альдегиды имеет место в первом по ходу реакторе (конверсия 50-70%), поэтому повышение конверсии и селективности в этом реакторе определяет эффективность работы установки в целом.

Для процесса гидроформилирования пропилена, характеризующегося высокой экзотермичностью (тепловой эффект 30 ккал/моль), очень важно выдерживать заданную температуру в зоне реакции, для чего реакторы снабжены эффективными теплообменными устройствами - встроенными трубками Фильда, в которых под давлением циркулирует хладагент (конденсат водяного пара). Расход хладагента регулирует в широких пределах - от 120 до 180 м3/час, который обеспечивается рабочим циркуляционным насосом.

В случаях, когда реакция начинает «разгоняться» и температура в зоне реакции резко возрастает, что еще больше «разгоняет» реакцию (указанный саморазгон реакции имеет термин «вспышка»), и расхода хладагента, подаваемого рабочим циркуляционным насосом, не хватает, поэтому для предотвращения аварийной ситуации включают резервный насос (два насоса обеспечивают общий расход хладагента в количестве 260-270 м3/час).

Однако малейшее запаздывание с включением резервного насоса приводит к «вспышке» и аварийной остановке процесса при соответствующем сбросе реакционной массы в отходы. В то же время преждевременное включение второго насоса и почти удвоение расхода хладагента приводит к «замораживанию» реакции и потерям пропилена и синтез-газа в отходы.

Для стабилизации работы реактора были выполнены опытные пробеги на пилотной и промышленной установках гидроформилирования пропилена, которые показали, что параметрами процесса, существенно влияющими на конверсию пропилена и селективность его превращения в масляные альдегиды, являются температура, при которой осуществляется реакция, и эффективность теплосъема в корпусе первого по ходу реактора гидроформилирования. При этом было установлено неожиданное явление - эффективность теплосъема в корпусе первого по ходу реактора скачкообразно возрастала при достижении определенного (граничного) расхода хладагента по отношению к расходу пропилена, подаваемого в процесс.

Авторами предлагаемого изобретения на промышленной установке было изучено влияние соотношения объемных расходов хладагента и пропилена в первый реактор гидроформилирования на эффективность теплосъема (определяется величиной коэффициента теплопередачи) и на конверсию пропилена и селективность его превращения в масляные альдегиды.

Опытные пробеги проводили при следующих режимных параметрах процесса: расход сжиженного пропилена в первый по ходу реактор гидроформилирования Р-103 - 16 м3/час, расход синтез-газа 14500 нм3/час, соотношение СО:Н2 в синтез-газе 1:1,05 - 1,07 (неизбежные колебания состава синтез-газа, обусловленные технологией его получения), температура в зоне реакции 120-150°С, расход раствора катализатора 3,0 м3/час, концентрация кобальтового катализатора в зоне реакции 0,13 мас.%. Результаты этих исследований представлены в табл. 1.

Представленные результаты показывают, что при температуре в зоне реакции гидроформилирования 130°С (как в прототипе), найденная эффективность теплосъема, определяемая величиной коэффициента теплопередачи, не превышает 135 ккал/час·м2·°С. Точнее, при увеличении расхода хладагента от 125 до 280 м3/час, что соответствовало увеличению соотношения расходов хладагента и пропилена в интервале (7,5-17,5):1, величина коэффициента теплопередачи уменьшалась в диапазоне от 135 до 104 ккал/час·м2·°С.

Таблица 1№ п/пРасход хладагента, м3/часСоотношение хладагент/ пропиленТемпература хладагента на выходе из реактора, °СРазогрев хладагента, °СКоэффициент теплопередачи, ккал/час·м2·°С11258115201322180111091411532501510510105428017,5104910452901811015203630019115203187350221192450684002512328805945028125301095

При этом общая конверсия пропилена в процессе не превышала 92%, а селективность 80%, что соответствует расходной норме пропилена 746 кг и синтез-газа 1243 нм3.

При увеличении расхода хладагента от 280 м3/час до 290 м3/час (соответствует увеличению соотношения расходов хладагент: пропилен от 17,5:1 до 18:1) наблюдалось неожиданно резкое увеличение скорости реакции в первом по ходу реакторе гидроформилирования, что сопровождалось как увеличением количества отводимого тепла, так и существенным увеличением эффективности теплосъема - величина коэффициента теплопередачи скачкообразно почти удваивается (со 104 до 200 ккал/час·м2·°С) и далее монотонно возрастает с увеличением соотношения расходов хладагент: пропилен до 28:1 (технические возможности вновь установленного оборудования ограничивали расход хладагента величиной не более 450 м3/час).

Дополнительным подтверждением эффекта, наблюдаемого в первом по ходу реакторе, явилось спонтанное снижение температуры на 5-6°С (со 138°C до 132-133°С) во втором по ходу реакторе гидроформилирования, снижение температуры хладагента на выходе из второго реактора со 135°С до 127-128°С, а также резкое снижение концентрации пропилена до 1,3-1,8% об. в сдувках отработанного синтез-газа из сепаратора низкого давления.

Показатель «Концентрация пропилена в сдувках сепаратора низкого давления» является контрольным показателем процесса гидроформилирования, определяющим общую конверсию пропилена в процессе и селективность его превращения в масляные альдегиды, при этом концентрация пропилена в сдувочных газах согласно Технологическому регламенту ведения процесса должна находиться в интервале 3-8% об.

Увеличение соотношения объемных расходов хладагента и пропилена в первый реактор гидроформилирования до (18-28):1 позволяет повысить общую конверсию по пропилену до 94-98%, селективность до 84-88% и, соответственно, снизить расход пропилена до 695-718 кг/т спиртов и синтез-газа до 950-1050 нм3/т спиртов (см. примеры).

Таким образом, существенными отличительными признаками предлагаемого способа являются:

- проведение процесса получения масляных альдегидов гидроформилирования пропилена в первом по ходу реакторе в режимах, при которых соотношение объемных расходов хладагента и пропилена, подаваемого в реактор гидроформилирования, находится в диапазоне (18-28):1, при этом значения коэффициента теплопередачи от реакционной массы к хладагенту находятся в диапазоне 200-1100 ккал/час·м2·°С.

Технико-экономический расчет показывает, что применение предлагаемого способа получения масляных альдегидов на установке производства бутиловых спиртов мощностью 170 тыс. т/год позволяет за счет снижения расходных норм по пропилену с 746 кг до 697-718 кг, по синтез-газу с 1257 нм3 до 950-1050 нм3 получить гарантированный экономический эффект не менее 30 млн. руб./год (˜1 млн $ US).

Промышленная применимость предлагаемого способа иллюстрируется следующими примерами.

Пример 1 (средние значения заявляемых параметров)

Получение концентрата масляных альдегидов осуществляют по нафтенатно-испарительной схеме оксосинтеза.

В первый по ходу реактор гидроформилирования Р-103 подают 16 м3/час сжиженного пропилена, 11500 нм3/час синтез-газа и 3 м3/час раствора катализатора. Процесс проводят при давлении 290 кгс/см2 и температуре 130°С. Тепло реакции гидроформилирования снимают водяным конденсатом, циркулирующим в трубках Фильда с общей поверхностью теплообмена, равной 808 м2.

Расход водяного конденсата равен 352 м3/час, температура на входе в трубки Фильда 95°С, на выходе 119°С. Соотношение объемных расходов водяной конденсат: пропилен равно 22:1, вычисленный коэффициент теплопередачи от реакционной смеси к хладагенту в трубках Фильда равен 505 ккал/час·м2·°С.

Продукт гидроформилирования из реактора Р-103 поступает в реактор Р-104, в котором при давлении 275 кгс/см2 и температуре 135°С реакция гидроформилирования пропилена доводится до конца. Температура водяного конденсата на входе в трубки Фильда 115°С, на выходе 130°С, расход 136 м3/час.

Катализат из реактора Р-104 подвергают охлаждению до 45°С, сепарации от газов в сепараторах высокого и низкого давления, после чего жидкий продукт гидроформилирования обрабатывают воздухом при температуре 45°С и давлении 4 кгс/см2 в присутствии нафтеновых кислот с целью перевода карбонилов кобальта в термически устойчивые соли нафтеновых кислот. Из декобальтизированного катализата простой эвопарацией продукта сначала при атмосферном давлении и температуре в кубе испарителя 148°С, затем под вакуумом при остаточном давлении 185 мм рт.ст., температуре 176°С выделяют концентрат масляных альдегидов с расходом 20,4 м3/час.

Расходная норма в пробеге составила по пропилену 701 кг, по синтез-газу 980 нм3.

Пример 2 (нижняя заявляемая граница соотношения объемных расходов хладагент: пропилен)

Процесс получения концентрата масляных альдегидов гидроформилированием пропилена осуществляют аналогично примеру 1 с тем отличием, что соотношение объемных расходов хладагент : пропилен соответствует нижней заявляемой границе, а именно 18:1, а также с тем отличием, что температура осуществления реакции в первом по ходу реакторе равна 150°С, давление 300 кгс/см2.

В результате проведения процесса получают концентрат масляных альдегидов с расходной нормой по пропилену 697 кг, по синтез-газу 950 нм3.

Пример 3 (средние значения заявляемых параметров)

Процесс получения концентрата масляных альдегидов гидроформилированием пропилена осуществляют аналогично примеру 1 с тем отличием, что соотношение объемных расходов хладагент : пропилен равно 22:1, а также с тем отличием, что температура осуществления реакции в первом по ходу реакторе равна 120°С, давление 250 кгс/см2.

В результате проведения процесса получают концентрат масляных альдегидов с расходной нормой по пропилену 706 кг, по синтез-газу 983 нм3.

Пример 4 (верхняя заявляемая граница соотношения объемных расходов хладагент: пропилен)

Процесс получения концентрата масляных альдегидов гидроформилированием пропилена осуществляют аналогично примеру 1 с тем отличием, что соотношение объемных расходов хладагент : пропилен соответствует верхней заявляемой границе, а именно 28:1.

В результате проведения процесса получают концентрат масляных альдегидов с расходной нормой по пропилену 699 кг, по синтез-газу 957 нм.

Похожие патенты RU2258059C1

название год авторы номер документа
СПОСОБ РАЗДЕЛЕНИЯ ПРОДУКТОВ ГИДРОФОРМИЛИРОВАНИЯ ПРОПИЛЕНА 2004
  • Рогов М.Н.
  • Жиляев Н.П.
  • Кошелев Ю.А.
  • Ишмияров М.Х.
  • Метельский В.М.
  • Степанцов В.И.
  • Куценко Н.А.
  • Хворова Е.П.
  • Ластовкин Г.А.
  • Сабылин И.И.
  • Хворов А.П.
RU2254323C1
СПОСОБ ПОЛУЧЕНИЯ БУТИЛОВЫХ СПИРТОВ 2004
  • Рогов М.Н.
  • Рахимов Х.Х.
  • Елин О.Л.
  • Ишмияров М.Х.
  • Ферлюдин Ю.П.
  • Жиляев Н.П.
  • Кошелев Ю.А.
  • Метельский В.М.
  • Куценко Н.А.
  • Степанцов В.И.
  • Хворов А.П.
  • Сабылин И.И.
  • Хворова Е.П.
RU2259345C1
СПОСОБ ПОЛУЧЕНИЯ МАСЛЯНЫХ АЛЬДЕГИДОВ В ПРИСУТСТВИИ НЕМОДИФИЦИРОВАННОГО КОБАЛЬТОВОГО КАТАЛИЗАТОРА 2008
  • Соколов Борис Геннадьевич
  • Борисов Рим Борисович
  • Гильченок Наум Давыдович
  • Петров Анатолий Николаевич
  • Соколов Максим Борисович
RU2393145C1
Способ управления процессом гидроформилирования пропилена 1989
  • Ащепков Алексей Иванович
  • Новоселов Николай Иванович
  • Зернин Владимир Николаевич
  • Гридин Юрий Иванович
  • Ганкин Виктор Юткович
  • Хворов Александр Петрович
SU1775390A1
СПОСОБ ВЫДЕЛЕНИЯ Н-МАСЛЯНОГО АЛЬДЕГИДА ИЗ ПРОДУКТА ГИДРОФОРМИЛИРОВАНИЯ ПРОПИЛЕНА 1997
  • Хворов А.П.
  • Шмелев Р.А.
  • Сабылин И.И.
  • Истомин Н.Н.
  • Журавлев П.А.
  • Поворотов Г.А.
RU2130917C1
Способ управления процессом гидроформилирования пропилена 1988
  • Ганкин Виктор Юдкович
  • Хворов Александр Петрович
  • Шапиро Арон Лейбович
  • Федотов Виталий Егорович
  • Ащепков Алексей Иванович
  • Пантелеймонов Евгений Николаевич
  • Елькин Александр Леонидович
  • Гридин Юрий Иванович
SU1555323A1
СПОСОБ АКТИВИРОВАНИЯ МЕДНОЦИНКХРОМОВОГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ АЛЬДЕГИДОВ 1999
  • Евграшин В.М.
  • Школьник А.Е.
  • Передернин В.М.
RU2148433C1
СПОСОБ ПОЛУЧЕНИЯ 2-ИЗОПРОПИЛ-П-КСИЛОЛА И 2,5-ДИИЗОПРОПИЛ-П-КСИЛОЛА 2009
  • Бондарук Анатолий Моисеевич
  • Канибер Владимир Викторович
  • Сабиров Равель Газимович
  • Назимок Владимир Филиппович
  • Назимок Екатерина Николаевна
  • Атрощенко Юрий Михайлович
  • Федяев Владимир Иванович
RU2415123C1
Способ гидроформилирования олефинов 1980
  • Дельник Владлен Бенционович
  • Кацнельсон Моисей Гиршевич
  • Кагна Светлана Шоломовна
  • Морозов Всеволод Федорович
  • Параконов Владимир Борисович
  • Миронов Виталий Михайлович
SU994461A1
Способ получения бутиловых спиртов 1976
  • Гуревич Генрис Семенович
  • Левин Семен Захарович
  • Шапиро Арон Лейбович
  • Седова Ирина Георгиевна
  • Прицкер Арнольд Абрамович
  • Фукс Еошка Шлоймович
  • Левин Юрий Михайлович
  • Бартош Иммрих
  • Бекгауз Вольфганг
  • Бетке Ганс-Йорг
  • Тилле Антон
  • Поредда Зигфрид
  • Гейниш Эбергард
  • Фишер Хорст
SU734181A1

Реферат патента 2005 года СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА МАСЛЯНЫХ АЛЬДЕГИДОВ

Изобретение относится к химической технологии, конкретно к усовершенствованному способу получения концентрата масляных альдегидов оксосинтезом. Способ осуществляют методом гидроформилирования пропилена синтез-газом в двух последовательно соединенных реакторах при температуре 120-150°С, давлении 250-300 кгс/см2 с отводом тепла реакции циркуляцией хладагента через трубки Фильда, встроенные в реакторы гидроформилирования с последующим разделением продуктов реакции. При этом процесс гидроформилирования в первом реакторе осуществляют в режиме, при котором соотношение объемных расходов хладагента, циркулирующего в трубках Фильда, и пропилена, подаваемого в реактор, составляет (18-28):1. Технический результат - повышение выхода конечных продуктов при улучшении энергетических показателей за счет эффективной теплопередачи в реакторе гидроформилирования. 1 табл.

Формула изобретения RU 2 258 059 C1

Способ получения концентрата масляных альдегидов методом гидроформилирования пропилена синтез-газом в двух последовательно соединенных реакторах при температуре 120-150°С, давлении 250-300 кгс/см2 с отводом тепла реакции циркуляцией хладагента через трубки Фильда, встроенные в реакторы гидроформилирования, с последующей переработкой продуктов реакции известными методами, отличающийся тем, что процесс гидроформилирования в первом реакторе осуществляют в режиме, при котором соотношение объемных расходов хладагента, циркулирующего в трубках Фильда, и пропилена, подаваемого в реактор, составляет (18-28):1.

Документы, цитированные в отчете о поиске Патент 2005 года RU2258059C1

Прибор для измерения силы звука 1924
  • Вайнберг А.М.
SU1586A1
Способ получения масляных альдегидов 1989
  • Дельник Владлен Бенционович
  • Казаков Николай Васильевич
  • Кацнельсон Моисей Гиршевич
  • Паксютов Геннадий Васильевич
  • Тюгаев Прокофий Федорович
SU1657487A1
СПОСОБ ВЫДЕЛЕНИЯ Н-МАСЛЯНОГО АЛЬДЕГИДА ИЗ ПРОДУКТА ГИДРОФОРМИЛИРОВАНИЯ ПРОПИЛЕНА 1997
  • Хворов А.П.
  • Шмелев Р.А.
  • Сабылин И.И.
  • Истомин Н.Н.
  • Журавлев П.А.
  • Поворотов Г.А.
RU2130917C1

RU 2 258 059 C1

Авторы

Рогов М.Н.

Рахимов Х.Х.

Елин О.Л.

Ишмияров М.Х.

Жиляев Н.П.

Кошелев Ю.А.

Метельский В.М.

Куценко Н.А.

Степанцов В.И.

Хворов А.П.

Сабылин И.И.

Хворова Е.П.

Федорова Т.А.

Даты

2005-08-10Публикация

2004-05-05Подача