МАТЕРИАЛ С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ Российский патент 2005 года по МПК C22C14/00 C22F3/00 C22K1/00 C23C8/28 

Описание патента на изобретение RU2259415C1

Изобретение относится к материалам с эффектом памяти формы (ЭПФ) с модифицированной поверхностью, которые могут быть использованы в качестве имплантатов в медицине, в качестве температурных датчиков, термочувствительных и исполнительных элементов и конструкций в приборостроении, радиотехники и т. д.

Известно большое количество сплавов с эффектом памяти формы, таких как Cu-Al, Cu-Al-Ni, Cu-Zn, Ag-Cd, Au-Cd, In-Tl, Ni-Al, Fe-Mn-Si, Fe-Pt, а также сплавы на основе Ti-Ni [Эффект памяти формы в сплавах. Пер. с англ. М.: Металлургия, 1979, 472 с.; Сплавы с эффектом памяти формы. К. Ооцука, К. Симидзу, Ю. Судзуки и др. Пер. с японск. - М.: Металлургия, 1990, 224 с.]. Однако при деформировании под большими нагрузками в этих материалах при последующем нагреве наблюдается значительный недовозврат исходной формы, т. е. низкая степень формовосстановления.

Известен материал на основе никелида титана с эффектом памяти формы с модифицированной методом имплантации ионов азота поверхностью [Налесник О.И., Ясенчук Ю.Ф., Мазуркина Н.А., Итин В.И., Гюнтер В.Э. Влияние электрополировки и ионной имплантации азота в поверхность на электрохимическое поведение титана и никелида титана в растворе NaCl. Имплантаты с памятью формы. 1992, №4, с.53-58.]. Предел текучести такого материала высокий, однако при больших нагрузках в нем развиваются процессы пластической деформации, что приводит к появлению остаточной деформации после нагрева и к неполному формовосстановлению образца.

Наиболее близким аналогом по совокупности существенных признаков к предлагаемому изобретению является запоминающий форму материал на основе никелида титана, состоящий из основы и поверхностного слоя, модифицированного легирующими элементами [патент РФ №2191842, С 22 С 19/03, приоритет 18.08.2000]. Однако степень формовосстановления этого материала при высоких деформирующих нагрузках недостаточно большая.

Актуальной задачей является создание материалов с ЭПФ с высокой степенью формовосстановления как при малых, так и при больших деформирующих нагрузках.

Указанный технический результат достигается тем, что материал с эффектом памяти формы, состоящий из основы и поверхностного слоя, модифицированного легирующими элементами обработкой низкоэнергетическим сильноточным электронным пучком (НСЭП), имеет толщину поверхностного слоя 1000-2500 нм, размеры кристаллитов в нем не более 30 нм.

В качестве основы выбран никелид титана следующего состава, ат.%:

титан49-51никельостальное,

при этом химический состав поверхностного слоя имеет следующее соотношение элементов, ат.%:

кислород10-20углерод10-15титан40-50никельостальное.

Материал с ЭПФ и таким поверхностным слоем даже при больших деформирующих нагрузках накапливает малую пластическую деформацию, а его степень формовосстановления при разгрузке или при последующем нагреве высока. Величина ЭПФ и температурный интервал проявления ЭПФ материала при этом практически не меняются.

Указанные свойства достигаются тем, что облучение материала с ЭПФ низкоэнергетическим сильноточным электронным пучком приводит к импульсному плавлению поверхностного слоя. За время существования жидкой фазы этот слой насыщается примесями кислорода и углерода, поступающими в расплав из остаточной атмосферы рабочей камеры, в которой происходит облучение. После окончания импульса в процессе высокоскоростной кристаллизации расплавленного слоя формируется мелкозернистая структура матричной фазы, содержащая мелкодисперсные частицы оксидов и карбидов. В результате зернограничного и дисперсионного механизмов упрочнения происходит увеличение предела прочности и уменьшение пластической деформации в материале при приложении внешних нагрузок.

Таким образом, создается поверхностный слой, отличающийся от основы материала с ЭПФ химическим и фазовым составами, микрокристаллической структурой, высокими прочностными характеристиками и сохраняющий высокие адгезионные параметры связи с основой.

Толщина поверхностного слоя материала с ЭПФ определяется из условий, что при меньшей толщине степень формовосстановления материала после деформирования большими нагрузками понижается до уровня материала-прототипа, а при большей толщине снижается величина ЭПФ. Максимальный размер кристаллитов и зерен вещества в поверхностном слое обусловлен технологическим режимом получения такого поверхностного слоя, кроме того, ультрамелкое зерно способствует повышению предела текучести в поверхностном слое, что также уменьшает величину пластической деформации и сохраняет высокой степень формовосстановления после приложения к материалу больших деформирующих нагрузок. Процентное содержание в поверхностном слое кислорода и углерода определяется тем, что уменьшение их количества ниже 10 ат.% не приводит к образованию в поверхностном слое достаточного количества оксидов и карбидов, повышающих предел текучести этого слоя, а увеличение их количества свыше 20 и 15 ат.% соответственно приводит к излишнему охрупчиванию поверхностного слоя.

Концентрационный интервал содержания титана в основе материала с ЭПФ из титан-никелевых сплавов определяется тем, что уменьшение его количества ниже 49 ат.% или увеличение выше 51 ат.% может привести к выделению в интерметаллическом соединении вторичных фаз, которые не обладают способностью к мартенситным превращениям и их присутствие может привести к вырождению мартенситного превращения в основном объеме материала и снижению величины ЭПФ.

Получение материала с ЭПФ с модифицированной поверхностью, состоящего из основы и модифицированного легирующими элементами поверхностного слоя, имеющего толщину 1000-2500 нм и размеры кристаллитов в нем не более 30 нм, невозможно известными способами.

Изобретение осуществляется следующим образом.

Пример: Материал с ЭПФ с поверхностным модифицированным слоем готовили поэтапно. Никелид титана состава Ti-50,5 aт.% Ni выплавляли шестикратным электродуговым переплавом в атмосфере аргона из компонентов: титан - иодидный, никель марки Н0. После плавки слиток подвергали экструзии, затем волочению с промежуточными отжигами. Полученные образцы в виде проволоки диаметром 2 мм и длиной 70 мм электролитически полировали.

Образцы облучали низкоэнергетическим сильноточным электронным пучком с параметрами: средняя энергия электронов 15- 20 кэВ, плотность энергии за импульс 5-8 Дж/см2, длительность импульса 1,5-3,5 мкс, число импульсов в серии 10-100, частота повторения импульсов 0,1 Гц. Облучение проводили в техническом вакууме 10-4-10-5 мм рт.ст., содержащем дозированное количество примесей кислорода и углерода.

Химический состав и структурно-фазовое состояние поверхностного слоя образцов в исходном состоянии и после облучения импульсным электронным пучком контролировали с помощью Оже-анализа и рентгенофазового анализа.

Величину и температурные интервалы проявления ЭПФ, остаточную деформацию после приложения различной деформирующей нагрузки определяли на установке типа обратный крутильный маятник. Схема испытаний следующая: выше температуры мартенситных превращений к образцу прикладывали постоянно действующий закручивающий момент сил. Нагруженный образец охлаждали ниже температур мартенситных превращений. Затем снимали нагрузку и осуществляли нагрев образца в свободном состоянии через интервал мартенситных превращений. На двухкоординатном пишущем потенциометре Н-307 фиксировали величину деформаций и температурные интервалы накопления и возврата деформации.

Из приведенных в таблице данных видно, что предлагаемые материалы с ЭПФ имеют малую величину остаточной деформации, обеспечивающую высокую степень формовосстановления по сравнению с прототипом.

Таблица.МатериалСостав модифицированного слоя по глубине, ат.%Величина остаточной деформации при формовосстановлении после деформирования под нагрузкой, %Параметры НСЭППримечаниеЭлементы100 нм500 нм1000 нм2500 нм3000 нм100 Мпа300 МПа500 МПа700 МПа900 МПа1100 МПаПлотность энергии, Дж/см2Число импульсов1TiNi без модификации поверхностиС3333300,42,5612Более 20О44444Ti4646464646Ni47474747472TiNi с НСЭП-обработкойС111410103000,31,236612О201610104Ti4041434346Ni29293737473TiNi с НСЭП-обработкойС101512113000,31,135,87,570О181312114Ti4444454546Ni28283133474TiNi с НСЭП-обработкойС101211103000,41,33,16,15,530O161412104Ti4344454746Ni31303233475TiNi с имплантированной поверхностьюС9433300,32,35,510Более 20ПрототипO425444Ti3845464646Ni1146474747

Похожие патенты RU2259415C1

название год авторы номер документа
МАТЕРИАЛ НА ОСНОВЕ НИКЕЛИДА ТИТАНА С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ 2000
  • Сивоха В.П.
  • Мейснер Л.Л.
  • Гриценко Б.П.
RU2191842C2
СПОСОБ ИЗГОТОВЛЕНИЯ КАРДИОИМПЛАНТАТА ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА С МОДИФИЦИРОВАННЫМ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКОЙ ПОВЕРХНОСТНЫМ СЛОЕМ 2013
  • Псахье Сергей Григорьевич
  • Лотков Александр Иванович
  • Мейснер Людмила Леонидовна
  • Мейснер Станислав Николаевич
  • Бармина Елена Георгиевна
RU2508130C1
ДЕНТАЛЬНЫЙ ВНУТРИКОСТНЫЙ ИМПЛАНТАТ И МАТЕРИАЛ С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Мейснер Людмила Леонидовна
  • Лотков Александр Иванович
  • Раздорский Владимир Викторович
  • Котенко Мария Викторовна
  • Никонова Ирина Викторовна
  • Макарьевский Илья Григорьевич
RU2397732C2
УСТРОЙСТВО ЗОНТИЧНОЕ (ОККЛЮДЕР) С МОДИФИЦИРОВАННЫМ ПОВЕРХНОСТНЫМ СЛОЕМ 2013
  • Лотков Александр Иванович
  • Кудряшов Андрей Николаевич
  • Псахье Сергей Григорьевич
  • Мейснер Людмила Леонидовна
  • Мейснер Станислав Николаевич
  • Кашин Олег Александрович
  • Гришков Виктор Николаевич
  • Нейман Алексей Александрович
  • Круковский Константин Витальевич
RU2522932C9
СПЛАВ С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ (ВАРИАНТЫ) 2003
  • Сивоха В.П.
  • Мейснер Л.Л.
RU2251584C2
Способ повышения износостойкости и антикоррозионных свойств изделий из стали 2021
  • Гренадёров Александр Сергеевич
  • Соловьев Андрей Александрович
  • Яковлев Евгений Витальевич
RU2764041C1
СПОСОБ ПЛАЗМЕННО-ИММЕРСИОННОЙ ИОННОЙ МОДИФИКАЦИИ ПОВЕРХНОСТИ ИЗДЕЛИЯ ИЗ СПЛАВА НА ОСНОВЕ НИКЕЛИДА ТИТАНА МЕДИЦИНСКОГО НАЗНАЧЕНИЯ 2015
  • Лотков Александр Иванович
  • Кашин Олег Александрович
  • Борисов Дмитрий Петрович
  • Круковский Константин Витальевич
  • Кудряшов Андрей Николаевич
  • Кудрявцева Юлия Александровна
  • Антонова Лариса Валерьевна
  • Коршунов Андрей Владимирович
RU2579314C1
ТЕРМОМЕХАНИЧЕСКИЙ ПОРОДОРАЗРУШАЮЩИЙ ИНСТРУМЕНТ 2003
  • Ермаков С.А.
  • Федоров Л.Н.
RU2247216C2
БИМЕТАЛЛИЧЕСКАЯ КОМПОЗИЦИЯ И ЭЛЕМЕНТ ИЗ НЕЕ 2006
  • Хусаинов Михаил Андреевич
  • Тамбулатов Борис Яковлевич
  • Андреев Владимир Александрович
  • Рубаник Василий Васильевич
  • Бондарев Андрей Борисович
RU2335401C2
РЕЗЕЦ ДЛЯ ТЕРМОФРИКЦИОННОГО ИНСТРУМЕНТА 2004
  • Федоров Лазарь Николаевич
RU2288340C2

Реферат патента 2005 года МАТЕРИАЛ С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ

Изобретение относится к материалам с эффектом памяти формы с модифицированной поверхностью, которые могут быть использованы в качестве имплантатов в медицине, в качестве температурных датчиков, термочувствительных и исполнительных элементов и конструкций в приборостроении, радиотехнике. Предложенный материал состоит из основы, выполненной из никелида титана следующего состава, ат.%: титан - 49-51, никель - остальное, и модифицированного легирующими элементами поверхностного слоя. Модифицированный поверхностный слой образован облучением низкоэнергетическим сильноточным электронным пучком, имеет толщину 1000-2500 нм и размеры кристаллитов не более 30 нм, в качестве легирующих элементов он содержит кислород и углерод, при следующем соотношении компонентов, ат.%: кислород - 10-20, углерод - 10-15, титан - 40-50, никель - остальное. Техническим результатом изобретения является создание материалов с эффектом памяти формы с высокой степенью формовосстановления как при малых, так и при больших деформирующих нагрузках. 1 табл.

Формула изобретения RU 2 259 415 C1

Материал с эффектом памяти формы с модифицированной поверхностью, состоящий из основы, выполненной из никелида титана следующего состава, ат.%: титан 49-51, никель остальное, и модифицированного легирующими элементами поверхностного слоя, отличающийся тем, что модифицированный поверхностный слой образован облучением низкоэнергетическим сильноточным электронным пучком, имеет толщину 1000-2500 нм и размеры кристаллитов не более 30 нм, а в качестве легирующих элементов он содержит кислород и углерод, при следующем соотношении компонентов, ат.%: кислород 10-20, углерод 10-15, титан 40-50, никель остальное.

Документы, цитированные в отчете о поиске Патент 2005 года RU2259415C1

МАТЕРИАЛ НА ОСНОВЕ НИКЕЛИДА ТИТАНА С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ 2000
  • Сивоха В.П.
  • Мейснер Л.Л.
  • Гриценко Б.П.
RU2191842C2
Способ восстановления формы материала, обладающего эффектом памяти формы 1988
  • Домрачев Владимир Ефимович
  • Монасевич Леонид Абрамович
  • Паскаль Юрий Иванович
SU1740488A1
JP 62054565 A, 10.03.1987
US 6001195 A, 14.12.1999.

RU 2 259 415 C1

Авторы

Мейснер Л.Л.

Лотков А.И.

Сивоха В.П.

Псахье С.Г.

Ротштейн В.П.

Озур Г.Е.

Карлик К.В.

Даты

2005-08-27Публикация

2004-01-09Подача