Предлагаемое изобретение относится к области нефтехимии, в частности к переработке кислых гудронов.
Для очистки и осветления нефтепродуктов длительное время использовался способ, заключающийся в их обработке серной кислотой. Эксплуатация этого способа привела к накоплению больших количеств отходов, содержащих свободную серную кислоту, сульфокислоты, парафиновые, нафтеновые, ароматические углеводороды, меркаптаны. Эти отходы получили наименование - кислые гудроны. Проблема переработки и утилизации кислых гудронов, содержащих множество ценных компонентов, представляется весьма актуальной.
Известен способ переработки кислых гудронов путем нейтрализации содержащейся в ней серной кислоты карбонатом кальция, гидроксидом или оксидом кальция (гашеной или негашеной известью) с получением твердого продукта и маслообразной фракции, из которой перегонкой при температуре 100-600°С получают печное топливо [Японская заявка №51-111207, кл. 1889 (C 10 G 19/00), заявл. 26.03.75, №50-37/149, опубл.01.10.76, РЖХ, 1978. 4 П 171 П].
По этому известному способу в качестве твердого продукта нейтрализации в основном получается сульфат кальция, загрязненный нефтяными компонентами и не находящий серьезного практического применения. При перегонке маслообразной фракции лишь небольшая ее часть превращается в ценные топливные компоненты.
Известен способ очистки кислых гудронов от содержащейся в них серной кислоты путем ее экстракции в водную фазу с последующей нейтрализацией образующегося сернокислотного раствора газообразным аммиаком. Образующийся сульфат аммония выкристаллизовывают из продуктов нейтрализации и используют как удобрение в сельском хозяйстве [Пат. США №3013860,1961].
Этот известный способ переработки кислых гудронов обеспечивает эффективную и экономически целесообразную утилизацию одного из их компонентов - серной кислоты. Вторая часть кислого гудрона - маслообразная фракция в соответствии с известным способом вообще не подлежит переработке и утилизации.
Известен способ переработки кислых гудронов путем их термического крекинга при температуре 200-800°С. В результате нагрева кислого гудрона содержащаяся в нем серная кислота реагирует с органическими компонентами с образованием диоксида серы, оксида и диоксида углерода, воды, легких углеводородов, кокса и жидких углеводородов. Из последних можно выделить фракции моторного и котельного топлива, битумы [Пат. ЧССР №267776,1990].
Этот известный способ позволяет осуществить глубокую переработку кислых гудронов и получение на их основе жидких углеводородов, используемых в качестве моторного и котельного топлива. Однако этот способ не обеспечивает утилизации серной кислоты, которая при его реализации превращается в диоксид серы и теряется. Более того, диоксид серы вызывает сильную коррозию аппаратуры, а также снижает выход жидких углеводородов - наиболее ценных продуктов переработки кислых гудронов.
Если кислый гудрон очистить от содержащейся в нем серной кислоты в соответствии с известным способом [Пат. США 3013860, 1961], описанным выше, а оставшуюся маслянистую фракцию подвергнуть термическому крекингу в соответствии с известным способом [Пат. ЧССР №267776, 1990], то это обеспечивает комплексную переработку всех содержащихся в нем компонентов. В результате такого соединения двух известных способов свободная серная кислота перерабатывается и утилизируется в ценное химическое удобрение - сульфат аммония, а маслянистая часть превращается в котельное или моторное топливо и кокс. Однако и в этом случае не обеспечивается полное извлечение жидких углеводородов.
Известен способ [Пат. RU №2179571 С1, 2002] переработки кислых гудронов, включающий их очистку от серной кислоты и термический крекинг маслообразной фракции, при котором термический крекинг осуществляют в присутствии аммиака при соотношении гудрон : аммиак, равном 1:(0,05-0,1) по массе, и температуре 400-550°С.
Эти известные способы выбраны авторами в качестве прототипа предлагаемого изобретения, как наиболее близкие к нему по назначению и технической сущности. Таким образом, прототип предлагаемого изобретения включает очистку кислого гудрона от свободной серной кислоты путем ее экстракции в водную фазу и нейтрализации сернокислотного раствора аммиаком с получением сульфата аммония и термический крекинг оставшейся маслообразной фракции с получением жидких углеводородов, являющихся компонентами котельного и моторного топлива.
Известный способ обладает существенным недостатком - это токсичность и взрывооопасность применяемого аммиака. Аммиак в процессе крекинга выполняет роль газа-носителя, которым регулируется время пребывания летучих продуктов крекинга в реакционной зоне. Аммиак является токсичным газом 2 класса опасности. При концентрации 40-80 мг/м3 резко раздражает глаза, верхние дыхательные пути, вплоть до рефлекторной задержки дыхания. Доза выше 1500 мг/м3 при экспозиции более 30 мин является смертельной [Вредные вещества в промышленности. Справочник. Неорганические соединений элементов V-VIII групп. Л.: Химия, 1989]. При концентрации 18-28% аммиак создает взрывоопасные смеси с воздухом [Некрасов Б.В. Основы общей химии. М.: Химия, 1965].
Токсичность и взрывоопасность аммиака усложняют технологию крекинга из-за необходимости дополнительных технологических приемов и оборудования для обеспечения безопасности труда.
Целью предлагаемого изобретения является обеспечение безопасности труда, упрощение технологии крекинга, улучшение качества жидкого топлива.
Указанная цель достигается тем, что в качестве газа-носителя при крекинге маслообразной фракции, образующейся при очистке кислых гудронов от серной кислоты, используют азот при соотношении маслообразная фракция : азот, равном 1:(0,05-0,1) по массе, и температуре 400-500°С.
Азот - инертный газ, являющийся побочным продуктом при производстве кислорода, широко используется в нефтегазовой промышленности для обеспечения взрывозащищенности электрообрудования.
Сначала кислый гудрон освобождают (очищают) от свободной серной кислоты известным способом - путем ее экстракции водой и нейтрализации образующегося при этом сернокислотного раствора водным раствором оксида кальция (известковым молоком).
Освобожденную от серной кислоты маслообразную фракцию подвергают термическому крекингу при температуре 400-550°С в присутствии газа-носителя - азота при соотношении маслообразная фракция : азот, равном 1:(0,05-0,1) по массе. При этих условиях термический крекинг органических составляющих гудрона приводит к образованию газообразных углеводородов (преимущественно C1-C4), жидких при нормальных условиях углеводородов, по составу соответствующих котельному или печному топливу и коксу.
Азот обеспечивает нейтральную среду, способствует эффективному термическому превращению очищенного кислого гудрона, а его поток - быстрому удалению образующихся продуктов из реактора и таким образом влияет на качество образующегося жидкого топлива, снижается содержание непредельных углеводородов.
Проведение термического крекинга маслообразной фракции в присутствии азота приводит к существенному повышению безопасности процесса.
При осуществлении крекинга в соответствии с предлагаемым изобретением азот добавляется в соотношении маслообразная фракция : азот, равном 1:(0,05-0,1) по массе. Если количество азота в подвергаемой крекингу смеси меньше указанного соотношения, то есть меньше 5 мас.%, то его оказывается недостаточно для достижения оптимального эффекта, и количество жидких углеводородов в продуктах уменьшается. Добавка азота в количествах сверх указанного, то есть более 10 мас.% нецелесообразно, поскольку не приводит к дальнейшему повышению выхода жидкой фракции.
Термический крекинг маслообразной фракции в присутствии азота в соответствии с предлагаемым изобретением осуществляют при температурах 400-550°С. При температуре ниже 400°С реакция превращения очищенного кислого гудрона протекает с недостаточной скоростью, и выход жидких компонентов недостаточен. При температуре выше 550°С в результате пиролиза кислого гудрона возрастает в продуктах содержание легких углеводородов и кокса и соответственно снижается доля жидкого топлива.
Таким образом, проведение процесса крекинга маслообразной фракции кислых гудронов в присутствии азота при соотношении 1: (0,05-0,1) по массе и температуре 400-550°С являются существенными признаками предлагаемого изобретения, обеспечивающими повышение доли жидких продуктов, используемых в качестве котельного или печного топлива. Эти признаки не известны из открытых источников научно-технической информации и являются новыми.
Предлагаемое изобретение осуществляют следующим образом. Сначала кислый гудрон освобождают (очищают) от свободной серной кислоты известным способом. С этой целью его смешивают с водой в соотношении 1:6 по массе. Смесь нагревают до температуры 95-98°С при постоянном перемешивании. После этого перемешивание прекращают, смеси дают расслоиться и отделяют водный слой (раствор серной кислоты) от маслообразной фракции. Раствор серной кислоты нейтрализуют известковым молоком до рН≈7. При этом в растворе образуется практически нерастворимый сульфат кальция, который выпадает в осадок. Маточный раствор в дальнейшем используют вместо воды для экстракции серной кислоты из последующих порций кислого гудрона.
Освобожденную от серной кислоты маслообразную фракцию подают в реактор, нагретый до рабочей температуры 400-550°С. Одновременно в реактор подают газообразный азот в количестве, составляющем 5-10 мас.% от массы маслообразной фракции, т.е. при соотношении маслообразная фракция : азот, равном 1:(0,05-0,1). Твердый продукт крекинга - кокс - осаждается на одной из стенок реактора и непрерывно удаляется с нее с помощью специального устройства и направляется в сборник. Образующиеся в результате превращения гудрона углеводороды на выходе из реактора сжижаются в конденсаторе, охлаждаемом проточной водой, и поступают в приемник жидкого топлива. Газообразные углеводороды C1-C4 утилизируются.
Ниже приведены примеры конкретного осуществления предлагаемого изобретения с указанием материального баланса на каждой стадии.
Пример 1. Берут 1 кг кислого гудрона и смешивают его с 6 кг воды. Смесь нагревают до температуры 95-98°С при постоянном перемешивании с помощью механической мешалки и выдерживают в течение 15 мин. Затем смесь переливают в делительную воронку и отделяют водный слой от маслообразного. Водный слой, содержащий раствор серной кислоты, нейтрализуют известковым молоком, прибавляя его до тех пор, пока рН раствора становится равным 7. При этом в растворе образуется труднорастворимый сульфат кальция, который выпадает в осадок. Материальный баланс стадии освобождения кислого гудрона от свободной серной кислоты приведен в таблице 1.
После очистки кислого гудрона от серной кислоты остается 0,9 кг маслообразной фракции, которая подвергается термическому крекингу. В рассматриваемом примере 1 крекинг осуществляют при температуре 400°С без добавки азота. Материальный баланс процесса крекинга при отсутствии азота приведен в таблице 2.
При проведении процесса в соответствии с прототипом выход жидких углеводородов составляет всего 22,2% от массы очищенного или 20% от массы исходного гудрона.
Пример 2. Очистку кислого гудрона от серной кислоты осуществляют известным способом, как в примере 1. Однако крекинг очищенного от кислоты гудрона осуществляют в соответствии с предлагаемым изобретением при температуре 475°С и с добавкой азота при соотношении маслообразная фракция : азот, равном 1:0,05 по массе. Материальный баланс процесса приведен в таблице 2.
Пример 3. Очистку кислого гудрона проводят так же, как в примерах 1 и 2, но крекинг очищенного гудрона осуществляют при температуре 550°С и соотношении маслообразная фракция : азот, равном 1:0,05 по массе. Материальный баланс процесса также приведен в таблице 2.
Пример 4. Очистку кислого гудрона проводят так же, как в примерах 1, 2 и 3, но крекинг осуществляют при температуре 450°С и соотношении маслообразная фракция : азот, равном 1:0,1 по массе. Материальный баланс процесса приведен в таблице 2.
Из приведенных в таблице 2 данных видно, что с использованием предполагаемого изобретения очищенный от серной кислоты гудрон перерабатывается в жидкое топливо с высоким выходом. В присутствии азота повышается безопасность процесса крекинга.
Материальный баланс процесса очистки кислого гудрона от свободной серной кислоты
Материальный баланс процесса крекинга кислого гудрона (маслообразная фракция), очищенного от серной кислоты
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ КИСЛЫХ ГУДРОНОВ | 2000 |
|
RU2179571C1 |
СПОСОБ ПЕРЕРАБОТКИ КИСЛЫХ ГУДРОНОВ | 2000 |
|
RU2180677C1 |
УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ КИСЛОГО ГУДРОНА И СПОСОБ ПЕРЕРАБОТКИ КИСЛОГО ГУДРОНА, ОСУЩЕСТВЛЯЕМЫЙ НА ЭТОЙ УСТАНОВКЕ | 2014 |
|
RU2574728C2 |
СПОСОБ ПЕРЕРАБОТКИ КИСЛЫХ ГУДРОНОВ | 2011 |
|
RU2470986C1 |
СПОСОБ ОЧИСТКИ И ОБЕЗВОЖИВАНИЯ КИСЛОГО ГУДРОНА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2525469C1 |
Способ термоокислительного крекинга мазута и вакуумных дистиллятов и установка для переработки тяжелых нефтяных остатков | 2020 |
|
RU2772416C2 |
Способ переработки кислого гудрона | 1971 |
|
SU454244A1 |
СПОСОБ ПЕРЕРАБОТКИ КИСЛЫХ ГУДРОНОВ | 2020 |
|
RU2755299C1 |
СПОСОБ ПОЛУЧЕНИЯ БИТУМА | 2005 |
|
RU2287550C1 |
Способ переработки гудрона | 2021 |
|
RU2773319C1 |
Изобретение относится к области нефтехимии, в частности, к переработке кислых гудронов. Способ переработки кислых гудронов включает их очистку от серной кислоты и термический крекинг, проводимый в присутствии газа-носителя при массовом соотношении маслообразная фракция : газ-носитель, равном 1:(0,05-0,1), и при температуре 400-550°С. В качестве газа-носителя используют азот. Изобретение позволяет повысить безопасность процесса и создать нейтральную среду, что благоприятно влияет на компонентный состав полученного жидкого топлива. 2 табл.
Способ переработки кислых гудронов, включающий их очистку от серной кислоты и термический крекинг, проводимый в присутствии газа-носителя при соотношении маслообразная фракция: газ-носитель, равном 1:(0,05-0,1) по массе, и при температуре 400-550°С, отличающийся тем, что в качестве газа-носителя используют азот.
СПОСОБ ПЕРЕРАБОТКИ КИСЛЫХ ГУДРОНОВ | 2000 |
|
RU2179571C1 |
Авторы
Даты
2005-10-27—Публикация
2004-04-07—Подача