Предлагаемое техническое решение предназначено для нагревания (кипячения) жидкости, преимущественно воды, и может быть использовано в быту и промышленности.
В практике широко используется способ электрического нагрева и кипячения воды, содержащий операции размещения резистивного элемента внутри нагреваемого объема жидкости, снаружи емкости содержащей жидкость или непосредственно в корпусе емкости содержащей жидкость, причем нагревательный элемент помещают в металлический корпус и изолируют от корпуса изоляционным наполнителем.
Недостатком известных способов, взятых за прототип, является низкий КПД.
Задачей предлагаемого технического решения является увеличение КПД электрических кипятильников.
Поставленная задача решается путем изготовления металлического корпуса нагревателя из металла с низким показателем работы выхода электронов или нанесением на поверхность металлического корпуса нагревателя, обращенную к нагреваемой жидкости, металла или сплава металлов с низким показателем работы выхода электронов, и формированием на поверхности поля микроострий.
Существенным отличием предлагаемого технического решения является то, что металлический корпус нагревателя изготавливают из металла с низким показателем работы выхода электронов или наносят на поверхность металлического корпуса нагревателя, обращенную к нагреваемой жидкости, металл или сплав металлов с низким показателем работы выхода электронов.
Например, выполнение металлического корпуса нагревателя из титана позволит снизить работу выхода электронов на 10% по сравнению с алюминиевым корпусом, а следовательно, повысить КПД кипятильника для приготовления питьевой воды. Нанесение на поверхность сплавов металлов, содержащих щелочные металлы, позволит снизить работу выхода электронов на 30-50%, т.е. существенно повысить КПД промышленных нагревателей.
Вторым существенным отличием является то, что поверхность металлического корпуса нагревателя, выполненного из металла с низким показателем выхода электронов или нанесенного на поверхность металлического корпуса слоя сплава металлов с низким показателем работы выхода электронов, формируют в виде поля микроострий.
Формирование металлической поверхности нагревателя, обращенной к нагреваемой жидкости, в виде поля микроострий также повышает КПД электрокипятильника.
Предложенный способ может быть реализован с помощью устройства, изображенного на чертеже, где показан единичный объем электрического кипятильника с водой и введены следующие обозначения:
1 - металлический корпус нагревателя; 2 - микроострие, сформированное на поверхности металла с низким показателем работы выхода электронов нанесенного на поверхность металлического корпуса нагревателя, обращенную к нагреваемой жидкости; 3 - пузырек газа водорода, формирующийся над микроострием; Н2О - молекулы воды; ОН- - отрицательный ион; Н+ - положительный ион водорода; Н - восстановленные, нейтральные атомы водорода, образующие газовый пузырек над микроострием.
Известно (X. Кухлинг. Справочник по физике: Пер. с нем. - М.: Мир, 1982. - 520 с., ил. См. стр.393)*, что при нагревании металлов, на их поверхности образуется электронное облако. Количество электронов, находящихся над поверхностью металла будет зависеть от температуры и работы выхода электронов. В радиолампах с целью снижения показателя работы выхода электронов из катодов, поверхность катодов покрывали пленкой оксида бария или другими сплавами.
Известно (там же, стр.141)*, что температура тела характеризуется энергией с которой движутся или совершают колебания относительно положения равновесия молекулы вещества. Интенсивность колебаний молекул в твердых телах и движение их в жидкостях пропорциональна величине избытка свободных электронов в данном веществе. Избыток свободных электронов образуют, например, пропусканием через вещество электрического тока, нагреванием, воздействием электромагнитного поля.
Потенциал ионизации воды и ионов, содержащихся в воде в эВ: Н2О - 12,6; ОН - 12,9; О2 - 12,1; О - 13,6; Н-13,6.В обычных условиях в воде имеются положительные и отрицательные ионы:
Н2О↔Н++ОН-
При электролизе воды, водород собирается около отрицательного электрода.
Работа устройства. В процессе повышения температуры металлического корпуса нагревателя 1, вокруг микроострий (2), сформированных на поверхности металла с низким показателем работы выхода электронов, нанесенного на поверхность металлического корпуса нагревателя, обращенную к нагреваемой жидкости, образуется облако электронов. Наличие свободных электронов будет способствовать восстановлению вблизи острия положительных ионов водорода H+ и более интенсивному перемещению и разложению на ионы молекул воды.
Процесс зарождения пузырьков неоднородностей или дефектов в металле нагревательных емкостей описан во многих справочниках по физике. Пузырек водорода (3), формирующийся над микроострием, служит основанием образования пара. Молекулы воды Н2О и ионы ОН-, обладающие высокой кинетической энергией, наполняют образовавшийся пузырек, увеличивая его размеры. Пузырек, увеличиваясь в объеме, поднимается к поверхности жидкости, повышая кинетическую энергию поверхностных слоев жидкости.
Высота микроострий составляет единицы микрон. Поле микроострий формируют на поверхности дна нагревательной емкости, обращенной к жидкости.
В результате количество подводимой к электрическому нагревателю тепловой энергии для кипячения жидкости может быть сокращено за счет снижения внутренней энергии системы и совершаемой системой работы. Что согласуется с первым законом термодинамики.
Положительным эффектом предлагаемого технического решения является повышение КПД электрических нагревателей (кипятильников), как минимум на 10%, что не сложно пересчитать в рублевый эквивалент.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО И СПОСОБ ОЧИСТКИ ЖИДКОСТИ | 2013 |
|
RU2635148C2 |
Способ увеличения генерации тепловой энергии в теплоносителе | 2020 |
|
RU2726643C1 |
ПРОТОЧНЫЙ НАГРЕВАТЕЛЬ | 2002 |
|
RU2269211C2 |
ЭЛЕКТРИЧЕСКАЯ ВОДОНАГРЕВАТЕЛЬНАЯ СИСТЕМА | 2010 |
|
RU2520783C2 |
НАГРЕВАТЕЛЬНОЕ УСТРОЙСТВО | 2010 |
|
RU2536221C2 |
ЭЛЕКТРИЧЕСКАЯ НАГРЕВАТЕЛЬНАЯ СИСТЕМА | 2008 |
|
RU2373669C1 |
ВЫСОКОТЕМПЕРАТУРНЫЙ ЭЛЕКТРОЛИЗЕР ВЫСОКОГО ДАВЛЕНИЯ, ОСУЩЕСТВЛЯЮЩИЙ АЛЛОТЕРМИЧЕСКИЙ ПРОЦЕСС | 2008 |
|
RU2441106C2 |
ВСТРОЕННЫЙ НАГРЕВАТЕЛЬ МАШИНЫ ДЛЯ ПРИГОТОВЛЕНИЯ НАПИТКОВ | 2008 |
|
RU2506030C2 |
БЫСТРОДЕЙСТВУЮЩИЙ НАГРЕВАТЕЛЬ И НАГРЕВАТЕЛЬНОЕ УСТРОЙСТВО | 1989 |
|
RU2015460C1 |
УСТРОЙСТВО ДЛЯ НАГРЕВА ЖИДКОСТИ | 1995 |
|
RU2075838C1 |
Предлагаемое техническое решение предназначено для нагревания (кипячения) жидкости, преимущественно воды, и может быть использовано в быту и промышленности. Способ повышения КПД электрического кипятильника, включающий изготовление металлического корпуса нагревателя из металла с низким показателем работы выхода электронов, или нанесением на поверхность металлического корпуса нагревателя, обращенную к нагреваемой жидкости, металла или сплава металлов с низким показателем работы выхода электронов, причем поверхность металлического корпуса нагревателя, обращенную к нагреваемой жидкости, формируют в виде поля микроострий. 1 ил.
Способ повышения КПД электрического кипятильника, включающий размещение в сосуде с жидкостью резистивного нагревательного элемента в металлическом корпусе, электрическую изоляцию нагревательного элемента от металлического корпуса и герметизацию его выводов, подключаемых к сети, отличающийся тем, что металлический корпус нагревателя изготавливают из металла с низким показателем работы выхода электронов или наносят на поверхность металлического корпуса нагревателя, обращенную к нагреваемой жидкости, металл или сплав металлов с низким показателем работы выхода электронов по сравнению с металлом корпуса, а поверхность металла или сплава металлов, обращенную к нагреваемой жидкости, формируют в виде микроострий.
ЭЛЕКТРИЧЕСКИЙ КИПЯТИЛЬНИК | 0 |
|
SU386481A1 |
СПОСОБ ЦЕНТРАЛИЗОВАННОГО ТЕПЛОЭНЕРГОСНАБЖЕНИЯ И КОМПЛЕКС ОБОРУДОВАНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2151964C1 |
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Авторы
Даты
2005-10-27—Публикация
2004-01-20—Подача