Изобретение относится к способу измерения общего объема пор полимерных материалов по заполнению их водой при комнатной температуре и давлении 300 атм.
Сегодня пористые полимерные материалы широко применяются в различных областях науки и техники. Так, описано применение пористых полимеров в качестве фильтров для улавливания органических веществ [Мое, WM., Irvine RL. Polyurethane foam based biofilter media for toluene removal. Water Sci Technol 2001; 43 (11): 35-42.] и летучих компонентов запаха [Avison SJ, Gray DA, Davidson GM, Taylor AJ. Infusion of volatile flavor compounds into low-density polyethylene. J Agric Food Chem 2001 Jan; 49 (1): 270-5.], как адсорбентов для разделения биомолекул [Маут В, Tessadri TR., Post E, Buchmeiser MR. Metathesis-based monoliths: influence of polymerization conditions on the separation of biomolecules. Anal Chem 2001 Sep 1; 73 (17): 4071-8.], в микрожидкостной хроматографии и капиллярном электрофорезе [Gusev I, Huang X, Horvath С. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J Chomatogr A 1999 Sep 3; 855 (1): 273-90.], в оптических электронных устройствах [Mayes AG, Biyth J, Millington RB, Lowe CR. A holographic sensor based on a rationally designed synthetic polymer. J Mol Recognit 1998 Winter; 11 (1-6): 168-74.] и электрохимических источниках питания [Sotiropoulos S., Brown I.L., Akay G., Lester E. Nickel incorporation into a hollow fibre microporous polymer: a preparation route for novel high surface area nickel structures. Materials Letters 35 (1998) 383-391.]. Большие возможности открывает использование пористых полимерных материалов в медицине. На их основе могут быть получены источники медленного высвобождения лекарственных препаратов в организме человека [Jang Q, Williams D, Owusu-Ababio G, Ebube NK, Habib MJ. Controlled release tacrine delivery system for the treatment of Alzheimer's disease. Drug Deliv 2001 Apr-Jun; 8 (2): 93-8.], а также в качестве имплантантов-заменителей костной ткани с улучшенной приживаемостью [El-Amid S.E., Attawia M., Lu H.H., Shan A.K. Integrin expression by human osteoblast cultured on degradable polymeric Imaterials applicable for tissue engineered bone. J.Orthop Res, Jan 20 (1), 20-8 (2002)].
Вне зависимости от того, в какой области используется данный полимерный материал, его важнейшей характеристикой является объем пор. Для измерения объема пор полимерных материалов традиционно применяются ртутная порометрия [E.J. Garbozci. Mercury porosimetry and effective networks for permeability calculation in porous materials. Powder Thechnology 67, 121 (1991)], а также классический сорбционный метод [А.А Тагер. Физикохимия полимеров. Из-во «Химия», М., 1978 г., 544 с., с 496]. Оба метода имеют ряд существенных недостатков. Так, к очевидным недостаткам ртутной порометрии относятся: необходимость работы с токсичной ртутью под высоким давлением, а также невозможность дальнейшего использования образца после измерений. Адсорбционный метод позволяет проводить измерения пористости только при небольшом (до 1 мкм) радиусе пор образца [Экспериментальные методы в адсорбции и молекулярной хроматографии. Под ред. А.В.Киселева и В.П.Древинга. М., изд-во МГУ, 1970, 466 с.], при этом сам процесс измерения является чрезвычайно длительным.
Наиболее близким к предлагаемому способу измерения общей пористости является способ, описанный в патенте SU 494665 от 16.04.1976. В данном патенте предложен способ измерения пористости капиллярно-пористых материалов посредством погружения образца в пропиточную жидкость и выдерживания в ней до полного заполнения пористого пространства при комнатной температуре и атмосферном давлении. Вычисление пористости при этом осуществляется по разнице в массе образца до и после пропитки. Предлагаемый способ имеет отличия по сравнению с способом, описанным в патенте SU 494665 от 16.04.1976, а именно высокую скорость проведения измерений, обеспечиваемую проведением измерений жидкостью под давлением, и возможность полной термической десорбции жидкости из образца после проведения измерений без существенного изменения пористой структуры.
Для измерений применялась установка, принципиальная схема которой приведена на фиг.1. Измерение производится следующим образом: образец полимера известной массы помещают в ячейку высокого давления Р. Затем при помощи насоса Н ячейку заполняют водой до давления 300 атм. Образец выдерживают при данном давлении в течение 30 минут. Затем образец извлекают из ячейки высокого давления и взвешивают. Общую пористость в см3/г рассчитывают по формуле:
где М - масса образца после заполнения водой.
m - масса образца до заполнения.
ρ300 - плотность воды при давлении 300 атм, равная 1, 015 г/см3.
В таблице приведены данные по общей пористости различных полимерных материалов, измеренной с помощью предлагаемого способа. В той же таблице приведен средний размер пор образцов по данным сканирующей электронной микроскопии.
К достоинствам метода следует также отнести возможность использования образца после измерений, что немаловажно при проведении научных и технологических разработок. Для иллюстрации этой возможности на фиг.2 приведена диаграмма десорбции воды при температуре 40°С из образцов полиметилметакрилата после измерений. Из фиг.2 видно, что после заполнения при давлении 300 атм вода может быть полностью удалена из образца с помощью сушки в термостате в течение 100 часов при температуре 40°С, и образец может быть использован для дальнейших исследований, что невозможно при использовании метода ртутной порометрии.
Таким образом, в заявке предложен новый экологически безлопастный способ измерения общей пористости полимерных материалов, характеризующийся следующей совокупностью признаков измерение производится с помощью заполнения образца водой при давлении 300 атм и комнатной температуре, при этом общая пористость определяется по разнице в массе образца до и после заполнения. Вода, заполнявшая полимер в процессе измерений, может быть удалена из образца с помощью сушки в термостате, то есть полимерный материал легко регенерировать после измерений. Не существует никаких ограничений по максимальному измеряемому объему пор образца.
Пример. 1. Образец гранулированный полистирол диаметром 4 мм, исходный вес 99 мг. Заполнен водой при давлении 300 атм и температуре 20°С в течение 30 минут. Вес после заполнения 203 мг, вес заполнившей полимер в процессе измерений воды 104 мг. Общая пористость 1,05 см3/г.
Пример 2. Образец полилактида неправильной формы, исходный вес 247 мг. Заполнен водой при давлении 300 атм и температуре 20°С в течение 30 минут. Вес после заполнения 650 мг, вес заполнившей полимер в процессе измерений воды 403 мг. Общая пористость 1,63 см3/г.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ С ЗАДАННОЙ ПОРИСТОСТЬЮ С ПОМОЩЬЮ ОБРАБОТКИ ДВУОКИСЬЮ УГЛЕРОДА В СВЕРХКРИТИЧЕСКОМ СОСТОЯНИИ И ПОСЛЕДУЮЩЕЙ ТЕРМООБРАБОТКИ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ | 2004 |
|
RU2266305C2 |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОГЕЛЯ С ТЕРМООТЩЕПЛЯЕМЫМИ НУКЛЕИНОВЫМИ КИСЛОТАМИ | 2022 |
|
RU2826936C2 |
СПОСОБ ПОЛУЧЕНИЯ МЕЗОПОРИСТЫХ ГИДРОИЗОЛЯЦИОННЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ НА ОСНОВЕ ПОЛИТЕТРАФТОРЭТИЛЕНА И МАТЕРИАЛ, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ | 2018 |
|
RU2708844C1 |
СПОСОБ ПОЛУЧЕНИЯ МАЛОПЛОТНЫХ СВЕРХСШИТЫХ ПОЛИМЕРОВ МОНОЛИТНОГО ТИПА | 2020 |
|
RU2738607C1 |
Способ получения биорезорбируемого материала на основе магния и гидроксиапатита с защитным многокомпонентным покрытием | 2021 |
|
RU2763138C1 |
СПОСОБ ПОЛУЧЕНИЯ АЭРОГЕЛЕЙ НА ОСНОВЕ МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК | 2014 |
|
RU2577273C1 |
Композитный каталитический материал для получения чистого водорода для водородо-воздушных топливных элементов и способ его изготовления | 2022 |
|
RU2794902C1 |
Двухслойное прозрачное проводящее покрытие и способ его получения | 2022 |
|
RU2795822C1 |
БИОАКТИВНЫЙ РЕЗОРБИРУЕМЫЙ ПОРИСТЫХ 3D-МАТРИКС ДЛЯ РЕГЕНЕРАТИВНОЙ МЕДИЦИНЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2013 |
|
RU2533457C1 |
Суперабсорбирующая полимерная гидрогелевая ксерогелевая губка, способ ее получения и применение | 2017 |
|
RU2759898C2 |
Сущность: образец заполняют водой при давлении 300 атм и комнатной температуре. Пористость определяют по изменению массы образца после заполнения его водой. Технический результат изобретения заключается в ускорении процесса измерения. 2 ил., 1 табл.
Способ измерения общей пористости полимерных материалов, заключающийся в том, что образец выдерживают при комнатной температуре в жидкости и взвешивают, а общую пористость определяют по изменению массы образца, отличающийся тем, что в качестве жидкости используют воду, в которой выдерживают полимерные образцы из группы полистирол, или поликарбонат, или полиметилметакрилат, или полилактид при давлении 300 атм, обеспечивающем возможность последующей полной термической десорбции воды из полимерного образца.
Способ определения пористости капиллярно-пористых материалов | 1974 |
|
SU494665A1 |
СПОСОБ ИЗМЕРЕНИЯ ПОРИСТОСТИ И СПОСОБ ИЗМЕРЕНИЯ РАСПРЕДЕЛЕНИЯ ПОР ПО РАЗМЕРАМ | 2000 |
|
RU2172942C1 |
Способ определения пористости | 1990 |
|
SU1783380A1 |
Способ определения пористости материала | 1980 |
|
SU920472A1 |
Авторы
Даты
2005-11-10—Публикация
2004-02-02—Подача