РЕГУЛЯТОР ДАВЛЕНИЯ НЕПРЯМОГО ДЕЙСТВИЯ С САМООБОГРЕВОМ Российский патент 2005 года по МПК G05D16/10 

Описание патента на изобретение RU2263944C1

Предлагаемый регулятор давления газа непрямого действия с самообогревом относится преимущественно к области гидропневмоавтоматики и может быть использован в нефтяной, химической, энергетической и газовой отраслях промышленности, например для регулирования давления газа в системах топливопитания приводных двигателей, горелочных устройств любых теплоиспользующих агрегатов, а также - для регулирования давления природного газа на выходе газораспределительных станций (ГРС).

Известен регулятор давления газа непрямого действия с самообогревом (см. a.c СССР 224231, М. кл. G 05 D 16/10, от 24.10.1972 г). Известный регулятор содержит наружный цилиндрический корпус, являющийся частью газопровода со встроенным внутри него и аксиально расположенным подвижным цилиндрическим стаканом, связанным с пилотным устройством, соосную с ним вихревую камеру энергетического разделения с кольцевым каналом отвода горячего потока и расположенный между диафрагмой и камерой узел регулирования сечения тангенциального соплового ввода сжатого газа в камеру, а также - утилизирующий вихревой эжектор, расположенный непосредственно за диафрагмой на холодном конце камеры.

К наиболее существенным недостаткам известного регулятора следует отнести следующее. Во-первых, значительная динамическая неуравновешенность запорной пары, пропорциональная скоростному напору газа, действующему на торец подвижного стакана - клапана, что снижает надежность работы и точность регулирования. И во-вторых, что не маловажно - встроенная в газопровод конструкция регулятора не позволяет проводить эксплуатационно-профилактические работы без демонтажа его с линии редуцирования.

Наиболее близким техническим решением, выбранным в качестве прототипа, является изобретение по заявке №2003102325/06 (002323) от 27.01.2003, на которую Институт принял Решение о выдаче патента на изобретение от 11.05.2004 г. под названием "Регулятор давления газа непрямого действия с самообогревом".

Известный регулятор давления газа содержит наружный цилиндрический корпус, соосную с ним вихревую камеру энергетического разделения с кольцевым каналом отвода горячего потока и расположенный между диафрагмой и камерой узел регулирования сечения тангенциального соплового ввода сжатого газа в камеру, а также утилизирующий эжектор, расположенный непосредственно за диафрагмой на холодном конце камеры, причем узел регулирования, конкретно - клапан, выполнен в виде продольно перемещаемого штоком сервопривода полого цилиндра, взаимодействующего с выходным сечением соплового ввода посредством продольных тангенциальных каналов на стенке входного коллектора, охватывающего наружную стенку клапана, при этом канал отвода горячего потока в сторону холодного конца камеры и соплового ввода своим выходом подключен к входу горячего потока в эжектор.

Несмотря на то, что прототип устраняет наиболее существенные недостатки упомянутого аналога, тем не менее и он не лишен их. Наиболее существенным из них является следующее. Достаточная сложность конструкции, значительный осевой габарит, обусловленные схемой взаимного расположения сервопривода, клапана и вихревой камеры. Это обстоятельство затрудняет использование в его конструкции стандартных деталей, что ограничивает внедрение прототипа малыми его типоразмерами, например диаметром условного прохода не более Ду 25 мм.

Техническим результатом предполагаемого изобретения является существенное уменьшение вибраций корпуса регулятора и соответственно его шума, увеличение расходонапряженности регулятора, повышение его эксплуатационной надежности с обеспечением приемлемой точности регулирования за счет эффективного самообогрева и динамической уравновешенности запорной пары, а также - снижение материальных затрат при разработке агрегата в целом, за счет простоты и технологичности его конструкции при максимальном использовании стандартизованных деталей, что, в конечном счете, гарантирует его конкурентоспособность.

Этот результат достигается в регуляторе давления, который содержит наружный цилиндрический корпус, соосную с ним вихревую камеру энергетического разделения с кольцевым каналом отвода горячего потока и расположенный между диафрагмой и камерой узел регулирования сечения тангенциального соплового ввода сжатого газа в камеру, а также утилизирующий эжектор, расположенный непосредственно за диафрагмой на холодном конце камеры. При этом узел регулирования, конкретно - клапан, выполнен в виде продольно перемещаемого штоком сервопривода корпуса диафрагмы, взаимодействующего с выходным сечением соплового ввода посредством продольных тангенциальных каналов на стенке холодного конца камеры, охватывающей наружную стенку клапана. При этом канал отвода горячего потока в сторону холодного конца камеры и соплового ввода своим выходом подключен к входу горячего потока в эжектор.

Причем наружный цилиндрический корпус с боковым входом сжатого газа и заглушенный со стороны выхода штока сервопривода и горячего конца вихревой камеры содержит по направлению горячего потока раскруточный диффузор с турбулизатором, промежуточную перегородку, зажатую во фланцевом разъеме наружного корпуса, а также - выходную подвижную перегородку таким образом, что в кольцевой полости, образующей напротив бокового входа сжатого газа входной коллектор, коаксиально наружному корпусу расположены жестко закрепленные с перегородками эжекторные трубы с соплами выхода горячего потока параллельно выходу холодного потока из диафрагмы. При этом шток, установленный строго по оси вихревой камеры, со стороны выхода холодного потока посредством шаровой опоры пристыкован к крестовине корпуса диафрагмы - клапана. Кроме того, вихревая камера со стороны ее горячего конца выполнена в виде усеченного конуса с расширением в сторону выхода горячего потока с рекомендуемым углом конусности около 7° и длине конической части не менее 3х диаметров камеры в сечении соплового ввода. А диаметр штока с учетом необходимой его жесткости не должен превышать 0,2 от упомянутого диаметра камеры. При этом на корпусе клапана, со стороны входного коллектора предусмотрен кольцевой канал, сообщенный сквозными отверстиями с полостью коллектора, причем глубина канала должна соответствовать величине необходимого усилия от сжатого газа, действующего на закрытие клапана. Кроме того, турбулизатор может быть выполнен, например, в виде глухих отверстий на корпусе диффузора, ограниченном диаметром, равным 0,7 от диаметра основания усеченного конуса вихревой камеры, при этом корпус вихревой камеры с сопловым вводом состыкован с корпусом коллектора посредством шпилек, закрепленных резьбовым концом с промежуточной перегородкой, а противоположным концом (со стяжной гайкой) - на бобышках корпуса диффузора.

На чертеже показан общий вид регулятора давления в виде продольного разреза с поперечным сечением А-А в закрытом положении клапана (без сервопривода).

Регулятор давления содержит наружный цилиндрический корпус 1, соосную с ним вихревую камеру 2 энергетического разделения с кольцевым каналом 3 отвода горячего потока и расположенный между диафрагмой 4 и камерой узел регулирования сечения тангенциального соплового ввода сжатого газа в камеру, а также утилизирующий эжектор, расположенный непосредственно за диафрагмой на холодном конце камеры. Причем узел регулирования, конкретно клапан 5, выполнен в виде продольно перемещаемого штоком 6 сервопривода корпуса диафрагмы, взаимодействующего с выходным сечением соплового ввода посредством продольных тангенциальных каналов 7 на стенке холодного конца вихревой камеры, охватывающей наружную стенку клапана (корпуса диафрагмы). При этом канал 3 отвода горячего потока в сторону холодного конца камеры и соплового ввода своим выходом подключен к входу горячего потока в эжектор. Новым в предложенном регуляторе является то, что наружный корпус 1 с боковым входом 8 сжатого газа и заглушенный со стороны выхода штока 6 содержит по направлению горячего потока раскруточный диффузор 9 с турбулизатором 10, промежуточную перегородку 11, зажатую во фланцевом разъеме 12 наружного корпуса 1, а также - выходную подвижную перегородку 13 таким образом, что в кольцевой полости, образующей напротив бокового входа входной коллектор 14, расположены жестко соединенные с перегородками 11 и 13 эжекторные трубы 15 с соплами 16 выхода горячего потока. При этом шток, установленный строго по оси вихревой камеры, со стороны выхода холодного потока пристыкован посредством шаровой опоры 17 к крестовине 18 корпуса диафрагмы - клапана.

Вихревая камера со стороны ее горячего конца выполнена в виде усеченного конуса 19 расширением в сторону выхода горячего потока с рекомендуемым углом конусности около 7° и длине конической части не менее 3х диаметров камеры в сечении соплового ввода (см. например, книгу А.П.Меркулова "Вихревой эффект и его применение в технике", изд-во "Машиностроение", М., 1969 г., с.69). А диаметр штока с учетом необходимой его жесткости не должен превышать 0,2 от упомянутого диаметра камеры.

Турбулизатор 10 может быть выполнен, например в виде глухих отверстий на корпусе диффузора в приосевой зоне, ограниченной диаметром, равным 0,7 от диаметра основания конуса 19. При этом корпус вихревой камеры с сопловым вводом состыкован с корпусом 20 коллектора посредством шпилек 21, закрепленных резьбовым концом с промежуточной перегородкой 11, а противоположным концом - на бобышках 22 корпуса диффузора.

Дополнительно на корпусе клапана может быть предусмотрен кольцевой канал 23, сообщенный сквозными отверстиями 24 с полостью коллектора, причем глубина канала должна соответствовать величине необходимого усилия от сжатого газа, действующего на закрытие клапана.

Из рассмотрения чертежа отчетливо видно, что весь набор наиболее нагруженных деталей регулятора состоит из стандартизованных деталей, как-то: наружный корпус 1 - из тройника, фланцев, части трубы и заглушки, боковой вход 8 - из перехода, корпус вихревой камеры 2 - точеный из толстостенной трубы, диффузор 9 - из заглушки, эжекторные трубы 15 - из стандартных труб, шток 6 - из прутка, перегородки 11 и 13 - из листа.

Регулятор работает следующим образом (рассматриваем вариант с поршневым пневмоприводом).

Осуществляя подачу управляющего газа в соответствующую полость пневмопривода и преодолевая силы трения на уплотнениях поршня, штока и клапана, а также - усилие возвратной пружины, производят плавное перемещение клапана, открывая доступ сжатого газа в вихревую камеру 2 энергетического разделения, где образуется интенсивный круговой поток, приосевые слои которого охлаждаются и отводятся через диафрагму 4 в виде холодного потока низкого давления, а периферийные слои подогреваются и вытекают через диффузор 9 в кольцевой канал 3. При этом особо важную роль приобретает форма горячего конца с турбулизатором 10, обеспечивающим создание необходимой турбулентости формирующегося здесь вынужденного вихря упомянутого приосевого холодного потока. А горячий поток, мгновенно зарождающийся на входе в вихревую трубу, подогревая корпус соплового ввода за счет теплопроводности, предотвращает возможное обмерзание рабочих поверхностей запорно-регулирующей пары в процессе дросселирования. Кроме того, за счет эжектирующего действия горячего потока, истекающего по трубам 15 и соплам 16, происходит не только компенсация потерь давления при движении холодного потока через диафрагму и крестовину 18, но и понижение давления в приосевой зоне соплового ввода сжатого газа, что расширяет диапазон эффективной работы вихревой камеры в условиях дефицита входного давления сжатого газа. Учитывая, что основные источники вибрации и шума, которыми являются, в общем случае, сверхзвуковые струи сжатого газа на входе в вихревую камеру и эжектирующего горячего газа, рассредоточены по окружности на большое число источников, что существенно снижает их суммарную интенсивность шума.

Таким образом, учитывая вышеизложенное, можно утверждать о возможности выполнения поставленной задачи: уменьшение вибраций корпуса регулятора и соответственно - его шума, увеличение расходонапряженности регулятора, повышение его эксплуатационной надежности с обеспечением приемлемой точности регулирования за счет эффективного самообогрева и динамической уравновешенности запорной пары, а также - снижение материальных затрат при разработке агрегата в целом за счет простоты и технологичности его конструкции при максимальном использовании стандартизованных деталей, что в конечном счете, гарантирует его конкурентоспособность.

Похожие патенты RU2263944C1

название год авторы номер документа
РЕГУЛЯТОР ДАВЛЕНИЯ ГАЗА ПРЯМОГО ДЕЙСТВИЯ С САМООБОГРЕВОМ 2003
  • Добрянский В.Л.
  • Хазиев Ш.Х.
RU2239863C1
РЕГУЛЯТОР ДАВЛЕНИЯ ГАЗА НЕПРЯМОГО ДЕЙСТВИЯ С САМООБОГРЕВОМ 2003
  • Добрянский В.Л.
  • Кривошеев А.И.
  • Серазитдинов Р.Ш.
  • Громов В.С.
  • Зарецкий Я.В.
  • Серазетдинов Ф.Ш.
  • Хазиев Ш.Х.
RU2248603C2
ВИХРЕВАЯ ТРУБА 2001
  • Добрянский В.Л.
  • Зарецкий Я.В.
  • Серазетдинов Ф.Ш.
  • Тимонин В.А.
RU2232359C2
ГАЗОРАСПРЕДЕЛИТЕЛЬНАЯ СТАНЦИЯ 2002
  • Громов В.С.
  • Добрянский В.Л.
  • Зарецкий Я.В.
  • Коротков Л.В.
  • Кривошеев А.И.
  • Рысев В.В.
  • Серазетдинов Ф.Ш.
  • Серазитдинов Р.Ш.
  • Якунин И.А.
RU2225567C1
ВИХРЕВАЯ ТРУБА 1999
  • Добрянский В.Л.
  • Зарецкий Я.В.
  • Кривошеев А.И.
  • Серазетдинов Ф.Ш.
  • Серазитдинов Р.Ш.
  • Тимонин В.А.
  • Шишкин А.П.
RU2170891C1
ВИХРЕВАЯ ТРУБА 2001
  • Добрянский В.Л.
  • Кривошеев А.И.
  • Серазитдинов Р.Ш.
  • Тимонин В.А.
RU2202744C2
СПОСОБ ВИХРЕВОГО РЕДУЦИРОВАНИЯ ДАВЛЕНИЯ ГАЗА 2014
  • Смирнов Вячеслав Александрович
  • Смирнова Мария Вячеславовна
RU2586232C2
СПОСОБ ВИХРЕВОГО РЕДУЦИРОВАНИЯ ДАВЛЕНИЯ ГАЗА 2013
  • Смирнов Вячеслав Александрович
  • Смирнова Мария Вячеславовна
RU2569473C2
ВИХРЕВАЯ ТРУБА В.И.МЕТЕНИНА 1996
  • Метенин Владимир Иванович
RU2114358C1
СПОСОБ И УСТРОЙСТВО ВИХРЕВОГО ЭНЕРГОРАЗДЕЛЕНИЯ ПОТОКА РАБОЧЕГО ТЕЛА 2008
  • Новиков Илья Николаевич
  • Чигрин Валентин Семенович
RU2371642C1

Реферат патента 2005 года РЕГУЛЯТОР ДАВЛЕНИЯ НЕПРЯМОГО ДЕЙСТВИЯ С САМООБОГРЕВОМ

Изобретение относится к области гидропневмоавтоматики и может быть использовано в нефтяной, химической, энергетической и газовой отраслях промышленности, например для регулирования давления газа в системах топливопитания приводных двигателей компрессоров - нагнетателей горелочных устройств любых теплоиспользующих агрегатов, а также - для регулирования давления природного газа на выходе газораспределительных станций (ГРС). Регулятор давления газа содержит наружный цилиндрический корпус, соосную с ним вихревую камеру энергетического разделения с кольцевым каналом отвода горячего потока и расположенный между диафрагмой и камерой узел регулирования сечения тангенциального соплового ввода сжатого газа в камеру, а также - утилизирующий эжектор, причем узел регулирования, конкретно - клапан, выполнен в виде продольно перемещаемого штоком сервопривода корпуса диафрагмы, взаимодействующего с выходным сечением соплового ввода посредством продольных тангециальных каналов на стенке холодного конца вихревой камеры, охватывающей наружную стенку клапана, при этом канал отвода горячего потока в сторону холодного конца камеры своим выходом подключен к входу горячего потока в эжектор, причем наружный цилиндрический корпус с боковым входом сжатого газа и заглушенный со стороны выхода штока сервопривода и горячего конца вихревой камеры содержит по направлению горячего потока раскруточный диффузор с турбулизатором, промежуточную перегородку, зажатую во фланцевом разъеме наружного корпуса, а также - выходную подвижную перегородку таким образом, что в кольцевой полости, образующей напротив бокового входа сжатого газа входной коллектор, коаксиально наружному корпусу расположены жестко соединенные с перегородками эжекторные трубы с соплами выхода горячего потока параллельно выходу холодного потока из диафрагмы. При этом шток, установленный строго по оси вихревой камеры, со стороны выхода холодного потока посредством шаровой опоры пристыкован к крестовине корпуса диафрагмы - клапана. Технический результат - уменьшение вибраций корпуса регулятора и соответственно его шума, увеличение расходонапряженности регулятора, повышение его эксплуатационной надежности и динамической уравновешенности запорной пары.3з.п. ф-лы,1ил.

Формула изобретения RU 2 263 944 C1

1. Регулятор давления газа непрямого действия с самообогревом, содержащий наружный цилиндрический корпус, соосную с ним вихревую камеру энергетического разделения с кольцевым каналом отвода горячего потока и расположенный между диафрагмой и камерой узел регулирования сечения тангенциального соплового ввода сжатого газа в камеру, а также утилизирующий эжектор, расположенный непосредственно за диафрагмой на холодном конце камеры, причем узел регулирования, конкретно клапан, выполнен в виде продольно перемещаемого штоком сервопривода корпуса диафрагмы, взаимодействующего с выходным сечением соплового ввода посредством продольных тангенциальных каналов на стенке холодного конца вихревой камеры, охватывающей наружную стенку клапана, при этом канал отвода горячего потока в сторону холодного конца камеры своим выходом подключен к входу горячего потока в эжектор, отличающийся тем, что наружный цилиндрический корпус с боковым входом сжатого газа и заглушенный со стороны выхода штока сервопривода и горячего конца вихревой камеры содержит по направлению горячего потока раскруточный диффузор с турбулизатором, промежуточную перегородку, зажатую во фланцевом разъеме наружного корпуса, а также выходную подвижную перегородку таким образом, что в кольцевой полости, образующей напротив бокового входа сжатого газа входной коллектор, коаксиально наружному корпусу расположены жестко соединенные с перегородками эжекторные трубы с соплами выхода горячего потока параллельно выходу холодного потока из диафрагмы, при этом шток, установленный строго по оси вихревой камеры, со стороны выхода холодного потока посредством шаровой опоры пристыкован к крестовине корпуса диафрагмы - клапана.2. Регулятор давления по п.1, отличающийся тем, что вихревая камера со стороны ее горячего конца выполнена в виде усеченного конуса с расширением в сторону выхода горячего потока с рекомендуемым углом конусности около 7° и длине конической части не менее 3 диаметров камеры в сечении соплового ввода, а диаметр штока с учетом необходимой его жесткости не должен превышать 0,2 от упомянутого диаметра камеры.3. Регулятор давления по п.1, отличающийся тем, что турбулизатор может быть выполнен, например, в виде глухих отверстий на корпусе диффузора, ограниченном диаметром, равным 0,7 от диаметра основания усеченного конуса вихревой камеры, при этом корпус вихревой камеры с сопловым вводом состыкован с корпусом коллектора посредством шпилек, закрепленных резьбовым концом с промежуточной перегородкой, а противоположным концом - на бобышках корпуса диффузора.4. Регулятор давления по п.1, отличающийся тем, что на корпусе клапана со стороны коллектора может быть предусмотрен кольцевой канал, сообщенный сквозными отверстиями с полостью коллектора, причем глубина канала должна соответствовать величине необходимого усилия от сжатого газа, действующего на закрытие клапана.

Документы, цитированные в отчете о поиске Патент 2005 года RU2263944C1

СПОСОБ ОБОГРЕВА РЕГУЛЯТОРОВ ДАВЛЕНИЯ 0
  • М. Ф. Ткаченко
SU217832A1

RU 2 263 944 C1

Авторы

Добрянский В.Л.

Зарецкий Я.В.

Хазиев Ш.Х.

Даты

2005-11-10Публикация

2004-07-02Подача