Настоящее изобретение относится к новому классу соединений, аналогичных по структуре некоторым встречающимся в природе и синтетическим халконам, а также к способам получения таких соединений и к их фармацевтическому применению.
Соединение 1,3-дифенил-2-пропен-1-он известно под ненаучным названием "халкон". Многие встречающиеся в природе флавоноиды по структуре аналогичны халкону и обозначаются общим термином "халконы". В последнее время показано, что некоторые флавоноиды, в том числе те, которые называются также халконами, обладают противораковым действием (Cancer Research 48, 5754, 1988) и химиопрофилактическим действием на некоторые опухоли (J.Nat.Prod. 53, 23, 1990).
В частности, показано, что кверцетин - повсеместно обнаруживаемый в растениях флавоноид - воздействует на пролиферацию клеток лейкемии человека (Br.J.Haematology, 75, 489, 1990) и на другие линии клеток (Br.J.Cancer, 62, 94, 942, 1990; Int. J.Cancer, 46, 112, 1990; Gynaecologic Oncology, 45, 13, 1992) и обладает синергическим эффектом в сочетании с обычными лекарственными средствами.
Кроме того, обнаружено, что некоторые природные или синтетические халконы, описанные в нашей международной заявке WO 91/17749 и в международной заявке WO 96/19209 (Baylor College of Medicine), обладают значительным антипролиферативным действием по отношению к различным культурам клеток.
Хотя механизм антипролиферативного действия флавоноидов и халконов в настоящее время неизвестен, считается, что он связан со взаимодействием этих соединений с рецепторами эстрогена типа II.
Действие этих соединений класса полифенолов in vivo, несомненно, еще более сложно. Все эти соединения характеризуются, как правило, почти полной нерастворимостью в воде и крайне низкой биодоступностью in vivo. связанной с быстрым метаболизмом фенолов и сильно выраженным сродством к жирам и протеинам.
Ныне неожиданно обнаружено, что некоторые новые халконы, производные халконов и аналоги халконов и, в частности, соединения, в которых фенильный цикл в положении 1 замещен или заменен циклами, содержащими один или несколько гетероатомов, обладают повышенным антипролиферативным действием в отношении как чувствительных раковых клеток, так и клеток, устойчивых к обычным химиотерапевтическим средствам, в том числе к противоопухолевым лекарственным средствам последнего поколения, паклитакселу и доцетакселу.
Таким образом, в соответствии с одним аспектом настоящего изобретения, предлагается соединение общей формулы (I):
или его фармацевтически приемлемая соль либо сольват, где:
Ar представляет собой
замещенную или незамещенную (предпочтительно ароматическую) карбоциклическую или гетероциклическую группу, причем упомянутая карбоциклическая или гетероциклическая группа содержит в циклической структуре от 5 атомов до 10 атомов, причем упомянутые атомы в циклической структуре образуют один или два цикла, где цикл или каждый из циклов содержит 5 атомов или 6 атомов, любые гетероатомы выбраны из группы, состоящей из N, О и S, а любые заместители при группе Ar выбраны независимо друг от друга из группы, состоящей из:
(а) Cl, (b) Br, (с) F, (d) ОН, (е) NO2, (f) CF3, (g) низший алкил C1-C4 (в частности, СН3), (h) SCH3, (i) NHCOCH3, (j) N(R6)(R8), где R6 и R8 одинаковы или различны и каждый из них представляет собой Н или низший алкил C1-C4, (k) OR10, где R10 представляет собой насыщенный или ненасыщенный низший углеводородный радикал C1-C6 нормального или разветвленного строения, который может быть незамещенным или замещенным одним, двумя или тремя заместителями, выбранными из следующих:
Cl, Br, F, OMe, NO2 и CF3,
и (1) -OCOR11, где R11 представляет собой насыщенный или ненасыщенный низший углеводородный радикал C1-C6 неразветвленного или разветвленного строения или фенил;
R представляет собой
ОН, OR10 или OCOR11, где R10 и R11 соответствуют вышеприведенным определениям; и
R1 представляет собой Н или низший углеводородный радикал C1-C6 нормального или разветвленного строения, который может быть незамещенным или замещенным одним, двумя или тремя заместителями, выбранными из Cl, Br, F, OMe, NO2 и CF3,
при условии, что:
(1) если R1=СН3 и R=OH, то
группа Ar не может представлять собой: 4-пиридил, 4-метилфенил,
3-нитрофенил, 3-метокси-4-этоксифенил, 3-метокси-4-n-бутоксифенил,
4-(N,N-диметиламино)фенил, 2-гидрокси-3,5-дибромфенил, 2-гидрокси-5-метилфенил, 4-хлорфенил, фенил, 3-метоксифенил, 4-метоксифенил или 3,4-диметоксифенил;
(2) если R1=СН3 и R=ОСОСН3, то
группа Ar не может представлять собой: фенил, 4-метоксифенил, 3,4-диметоксифенил, 4-(N,N-диметиламино)фенил, 3-метокси-4-ацетоксифенил, 3,4,5-триметоксифенил или 2-хлорфенил;
(3) если R1=фенил или Н и R=ОСН3 или ОН, то группа Ar не может представлять собой 4-метоксифенил; и
(4) если R1=СН3 и R=ОСН3 или ОН, то группа Ar не может представлять собой 4-метоксифенил или 3,4-диметоксифенил.
К предпочтительному классу соединений формулы (I) относятся соединения, в которых Ar - замещенная или незамещенная (предпочтительно ароматическая) гетероциклическая группа, содержащая в циклической структуре от 5 атомов до 10 атомов, причем упомянутые атомы в циклической структуре образуют один или два цикла, где цикл или каждый из циклов содержит 5 атомов или 6 атомов, любые гетероатомы выбраны из группы, состоящей из N, О и S, а любые заместители выбраны из группы, в состав которой входят:
(а) Cl, (b) Br, (с) F, (d) ОН, (е) NO2, (f) CF3, (g) низший алкил C1-C4 (в частности, СН3), (h) SCH3, (i) NHCOCH3, (j) N(R6)(R8), где R6 и R8 одинаковы или различны и каждый из них представляет собой Н или низший алкил C1-C4 (предпочтительно R6 и R8 одинаковы или различны и каждый из них представляет собой Н или низший алкил C1-C4), (k) OR10, где R10 представляет собой насыщенный или ненасыщенный низший углеводородный радикал C1-C6 нормального или разветвленного строения, который может быть незамещенным или замещенным одним, двумя или тремя заместителями, выбранными из следующих:
Cl, Br, F, ОМе, NO2 и CF3,
и (1) -OCOR11, где R11 представляет собой насыщенный или ненасыщенный низший углеводородный радикал С1-C6 нормального или разветвленного строения или фенил.
В предпочтительном классе соединений Ar содержит основную азотсодержащую функцию, например, обусловленную присутствием гетероциклического атома азота в цикле, или Ar может нести заместитель, содержащий основный атом азота, такой как аминогруппа или ацетамидогруппа. Таким образом, предпочтительной группой Ar является замещенная или незамещенная (предпочтительно ароматическая) гетероциклическая группа, содержащая в циклической структуре от 5 атомов до 10 атомов, по меньшей мере один из которых является атомом азота, а любой заместитель при цикле соответствует определению, относящемуся к формуле (I). К особо предпочтительным группам Ar относятся пиридил или индолил.
Второй предпочтительной группой соединений формулы (I) являются соединения, в которых Ar - замещенная или незамещенная (предпочтительно ароматическая) карбоциклическая группа, содержащая в циклической структуре от 5 атомов до 10 атомов, причем упомянутые атомы в циклической структуре образуют один или два цикла, где цикл или каждый из циклов содержит 5 атомов или 6 атомов, а любые заместители при группе Ar выбраны независимо друг от друга из группы, в которую входят:
(а) Cl, (b) Br, (с) F, (d) ОН, (е) NO2, (f) CF3, (g) низший алкил C1-C4 (в частности, СН3), (h) SCH3, (i) NHCOCH3, (j) N(R6)(R8), где R6 и R8 одинаковы или различны и каждый из них представляет собой Н или низший алкил C1-C4, (k) OR10, где R10 представляет собой насыщенный или ненасыщенный низший углеводородный радикал С1-C6 нормального или разветвленного строения, который может быть незамещенным или замещенным одним, двумя или тремя заместителями, выбранными из следующих:
Cl, Br, F, ОМе, NO2 и CF3,
и (1) -OCOR11, где R11 представляет собой насыщенный или ненасыщенный низший углеводородный радикал С1-C6 нормального или разветвленного строения или фенил.
В соединениях формулы (I) любые заместители при группе Ar предпочтительно выбраны из группы, в состав которой входят NHCOCH3, N(R6)(R8), OR10 и -OCOR11, где R6, R8, R10 и R11 соответствуют вышеприведенным определениям, относящимся к формуле (I). Предпочтительно каждый из R10 и R11 - насыщенный или ненасыщенный углеводородный радикал C1-C6 нормального или разветвленного строения, в частности, метил, этил, n -пропил или изопропил.
В этом предпочтительном классе соединений Ar предпочтительно замещен одной или несколькими группами OR10, где R10 - насыщенный или ненасыщенный низший углеводородный радикал С1-C6 нормального или разветвленного строения. Особенно предпочтительной группой R10 является метил. К особо предпочтительным группам Ar относятся фенил или фенил, замещенный одной, двумя или тремя метоксигруппами.
В предпочтительном классе соединений, где Ar содержит по меньшей мере одну основную азотсодержащую функцию и где Ar является карбоциклической группой, основная азотсодержащая функция обусловлена присутствием карбоциклической группы, несущей по меньшей мере один заместитель, выбранный из группы, состоящей из NHCOCH3 или N(R6)(R8), где R6 и R8 соответствуют определениям, относящимся к формуле (I).
В соединениях формулы (I) R предпочтительно представляет собой ненасыщенный низший углеводородный радикал C1-C6 нормального или разветвленного строения. В частности, R может быть ОСН=С(СН3)2, ОСН2-СМе=СН2, ОСН2СН=СН2 или ОСН2C≡СН. Особо предпочтительную группу составляют соединения, в которых Ar выбран из группы, в которую входят фенил, триметоксифенил, 3-пиридил, 4-пиридил и 3-индолил, а R выбран из ОСН=С(СН3)2, ОСН2СМе=СН2, ОСН2СН=СН2 или ОСН2С≡СН.
В соединениях формулы (I) R1 предпочтительно представляет собой низший углеводородный радикал С1-C6 нормального или разветвленного строения, в частности, метил.
Кроме того, предпочтительной группой соединений в соответствии с настоящим изобретением являются соединения формулы (I), в которых
Ar представляет собой
фенил, который может быть незамещенным или замещенным одним, двумя или тремя заместителями, каждый из которых независимо от других выбран из группы, в которую входят:
Cl, Br, F, ОМе, NO2, CF3, низший алкил C1-C4 (в частности, СН3), NMe2, NEt2, SCH3 и NHCOCH3;
тиенил, 2-фурил, 3-пиридил, 4-пиридил или индолил.
R представляет собой
ОН или OCH2R1, где R1 выбран из -СН=СМе2, -СМе=СН2, -СН=СН2 или -С≡СН.
Подразумевается, что соединения формулы (I), содержащие основную аминную функцию, могут быть превращены в соли кислот с фармакологически приемлемыми кислотами, например, хлористоводородной и фосфорной кислотами. Такие соли также включены в объем настоящего изобретения.
Настоящее изобретение также предлагает применение соединения формулы (I)
или его фармацевтически приемлемой соли либо сольвата, где:
Ar представляет собой
замещенную или незамещенную (предпочтительно ароматическую) карбоциклическую или гетероциклическую группу, причем упомянутая карбоциклическая или гетероциклическая группа содержит в циклической структуре от 5 атомов до 10 атомов, причем упомянутые атомы в циклической структуре образуют один или два цикла, где цикл или каждый из циклов содержит 5 атомов или 6 атомов, любые гетероатомы выбраны из группы, состоящей из N, О и S, а любые заместители при группе Ar выбраны независимо друг от друга из группы, состоящей из:
(а) Cl, (b) Br, (с) F, (d) ОН, (е) NO2, (f) CF3, (g) низший алкил С1-С4 (в частности, СН3), (h) SCH3, (i) NHCOCH3, (j) N(R6)(R8), где R6 и R8 одинаковы или различны и каждый из них представляет собой Н или низший алкил C1-C4, (k) OR10, где R10 представляет собой насыщенный или ненасыщенный низший углеводородный радикал C1-C6 нормального или разветвленного строения, который может быть незамещенным или замещенным одним, двумя или тремя заместителями, выбранными из следующих:
Cl, Br, F, ОМе, NO2 и CF3,
и (1) -OCOR11, где R11 представляет собой насыщенный или ненасыщенный низший углеводородный радикал С1-C6 нормального или разветвленного строения или фенил;
R представляет собой
ОН, OR10 или OCOR11, где R10 и R11 соответствуют вышеприведенным определениям; и
R1 представляет собой Н или низший углеводородный радикал C1-C6 нормального или разветвленного строения, который может быть незамещенным или замещенным одним, двумя или тремя заместителями, выбранными из Cl, Br, F, OMe, NO2 и CF3,
в производстве антипролиферативного лекарственного средства. В частности, соединения в соответствии с настоящим изобретением могут быть полезны для изготовления лекарственного средства для лечения или профилактики новообразований, в частности, опухолей, локализующихся в матке, яичниках или молочных железах. В частности, эти соединения могут быть полезны для приготовления лекарственного средства для поражения раковых клеток, стойких к действию паклитаксела и доцетаксела.
Соединения формулы (I) могут быть эффективно применены в комбинированных схемах терапии, включающих совместное использование соединения формулы (I) с другим противоопухолевым препаратом, в частности, с паклитакселом или доцетакселом. Комбинированная терапия может включать одновременное или последовательное применение соединения формулы (I) и противоопухолевого препарата. Такая комбинированная терапия является еще одним аспектом настоящего изобретения.
Далее, соединения в соответствии с настоящим изобретением могут быть применены при приготовлении лекарственного средства для лечения или предупреждения расстройств, возникающих в климактерический период, и остеопороза.
Кроме того, настоящее изобретение охватывает фармацевтическую композицию, содержащую одно или несколько соединений формулы (I) в сочетании с одной или несколькими фармацевтически приемлемыми добавками.
Изобретение описано ниже в форме иллюстративных примеров со ссылками на прилагаемые рисунки формул.
ПРИМЕРЫ
Пример 1. Общие условия получения халконов
Методика А
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору кетона (0,0075 моль) и альдегида (0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют; осадок отделяют фильтрованием и сушат в вакууме. Соединения кристаллизуют из этанола или вначале разделяют хроматографированием, а затем кристаллизуют из этанола.
Методика В
Раствор кетона (0,0075 моль), альдегида (0,0075 моль), пиперидина (15 мл) и уксусной кислоты (75 мл) в 95%-ном этаноле (80 мл) нагревают в противотоке в течение 5 ч. Добавляют к раствору молекулярные сита для удаления воды и оставляют смесь стоять (без перемешивания) в течение ночи. Как правило, образуется осадок, который собирают и кристаллизуют. Если продукт в этих условиях не выпадает в осадок, то выпаривают растворитель в вакууме, и остаток очищают хроматографированием на колонке с силикагелем.
Пример 2. 1-[4-метил-7-(2-метилпроп-1-енилокси)кумарин-8-ил]-3-(пиридин-3-ил)-пропен-1-он (см. прилагаемую формулу VIB 106)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-(3-метилбут-2-енилокси)-8-ацетилкумарина (2,14 г, 0,0075 моль) и пиридин-3-карбоксиальдегида (0,8 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из этанола и получают 0,84 г продукта с т.пл. 156-157°С. 1H-ЯМР (CDCl3) δ: 1,69 (s, 3H); 1,72 (s, 3H); 2,44 (d, 3H, J=1,22 Гц); 4,65 (d, 2H, J=6,5 Гц); 5,34-5,38 (m, 1H); 6,16 (d, 1H, J=1,2 Гц); 6,95 (d, 1H, J=8,8 Гц); 7,07 (d, 1H, J=18 Гц); 7,36 (d, 1H); 7,30-7,40 (m, 1H); 7,64 (d, 1H, J=8,9 Гц); 7,90 (m, 1H); 8,58-8,68 (m, 2H).
Пример 3. 1-[4-метил-7-(3-метилбут-2-енилокси)кумарин-8-ил]-3-фенилпропен-1-он (см. прилагаемую формулу VIB 119)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-(3-метилбут-2-енилокси)-8-ацетилкумарина (2,14 г, 0,0075 моль) и бензальдегида (0,8 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют; осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из этанола и получают 1,34 г продукта с т.пл. 114-116°С. 1H-ЯМР (CDCl3) δ: 1,69 (s, 3H); 1,72 (s, 3H); 2,44 (d, 3H, J=1,22 Гц); 4,65 (d, 2H, J=6,5 Гц); 5,34-5,38 (m, 1H); 6,16 (d, 1H, J=1,2 Гц); 6,95 (d, 1H, J=8,8 Гц); 7,00 (d, 1H, J=18 Гц); 7,10 (d, 1H); 7,30-7,40 (m, 3H); 7,45-7,52 (m, 12H); 7,61 (d, 1H, J=8,9 Гц).
Пример 4. 1-[4-метил-7-(3-метилбут-2-енилокси)кумарин-8-ил]-3-(3,4,5-триметоксифенил)пропен-1-он (см. прилагаемую формулу VIB 120)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-(3-метилбут-2-енилокси)-8-ацетилкумарина (2,14 г, 0,0075 моль) и 3,4,5-триметоксибензальдегида (1,47 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют; осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,3 г продукта с т.пл. 148-150°С. 1H-ЯМР (CDCl3) δ: 1,69 (s, 3H); 1,72 (s, 3H); 2,44 (d, 3H, J=1,2 Гц); 3,74-3,88 (m, 9H); 4,65 (d, 2H, J=6,5 Гц); 5,34-5,38 (m, 1H); 6,16 (s, 1H); 6,93 (d, 1H, J=16 Гц); 6,95 (d, 1H, J=8,9 Гц); 7,25 (d, 1H, J=16 Гц); 7,63 (d, 1H, J=8,9 Гц).
Пример 5. 1-[4-метил-7-(2-метилаллилокси)кумарин-8-ил]-3-(пиридин-3-ил)пропен-1-он (см. прилагаемую формулу VIB 122)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-метилаллилокси-8-ацетилкумарина (2,04 г, 0,0075 моль) и пиридин-3-карбоксиальдегида (0,8 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 0,8 г продукта с т.пл. 110-112°С. 1H-ЯМР (CDCl3) δ: 1,74 (s, 3Н); 2,43 (s, 3H); 4,55 (s, 2H); 4,98 (d, 2H, J=15 Гц); 6,16 (s, 1H); 6,93 (d, 1H, J=8,9 Гц); 7,09 (d, 1H, J=16 Гц); 7,35-7,37 (m, 1H); 7,36 (d, 1H, J=16 Гц); 7,64 (d, 1H, J=8,9 Гц); 7,85 (d, 1H, J=7 Гц); 8,58 (d, 1H, J=5 Гц); 8,67 (s, 1H).
Пример 6. 1-[4-метил-7-(2-метилаллилокси)кумарин-8-ил]-3-фенилпропен-1-он (см. прилагаемую формулу VIB 121)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-метилаллилокси-8-ацетилкумарина (2,04 г, 0,0075 моль) и бензальдегида (0,8 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют; осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,2 г продукта с т.пл. 158-160°С. 1H-ЯМР (CDCl3) δ: 1,74 (s, 3Н); 2,43 (s, 3Н); 4,55 (s, 2H); 4,98 (d, 2H, J=15 Гц); 6,16 (s, 1H); 6,93 (d, 1H, J=8,9 Гц); 7,02 (d, 1H, J=16 Гц); 7,43-7,53 (m, 4H); 7,61 (d, 1H, J=8,9 Гц).
Пример 7. 1-[4-метил-7-(2-метилаллилокси)кумарин-8-ил]-3-(3-метоксифенил)пропен-1-он (см. прилагаемую формулу VIB 162)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-метилаллилокси-8-ацетилкумарина (2,04 г, 0,0075 моль) и 3-метокси-бензальдегида (1,01 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,6 г продукта с т.пл. 85-87°С. 1H-ЯМР (CDCl3) δ: 1,74 (s, 3Н); 2,43 (s, 3Н); 3,85-3,88 (m, 3Н); 4,55 (s, 2H); 4,98 (d, 2H, J=15 Гц); 6,16 (s, 1H); 6,93 (d, 1H, J=8,9 Гц; 7,02 (d, 1H, J=16 Гц); 6,95-7,12 (m, 3Н); 7,26 (m, 1H); 7,30 (d, 1H, J=16 Гц); 7,61 (d, 1H, J=8,9 Гц).
Пример 8. 1-[4-метил-7-(2-метилаллилокси)кумарин-8-ил]-3-(3,4,5-триметоксифенил)пропен-1-он (см. прилагаемую формулу VIB 123)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-метилаллилокси-8-ацетилкумарина (2,04 г, 0,0075 моль) и 3,4,5-триметоксибензальдегида (1,47 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,7 г продукта с т.пл. 128-130°С. 1H-ЯМР (CDCl3) δ: 1,74 (s, 3Н); 2,43 (s, 3H); 3,75-3,88 (m, 9H); 4,55 (s, 2H); 4,98 (d, 2H, J=15 Гц); 6,16 (s, 1H); 6,72 (s, 1H); 6,93 (d, 1H, J=8,9 Гц); 6,94 (d, 1H, J=16 Гц); 7,23 (d, 1H, J=16 Гц); 7,61 (d, 1H, J=8,9 Гц).
Пример 9. 1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-фенилпропен-1-он (см. прилагаемую формулу VIB 158)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-аллилокси-8-ацетилкумарина (1,93 г, 0,0075 моль) и бензальдегида (0,8 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,1 г продукта с т.пл. 136-139°С. 1H-ЯМР (CDCl3) δ: 2,43 (s, 3Н); 4,65 (d, 2H, J=5,1 Гц); 4,25-4,55 (m, 2H); 5,15-5,35 (m, 1H); 6,16 (s, 1H); 6,93 (d, 1H, J=8,9 Гц); 7,03 (d, 1H, J=16 Гц); 7,04-7,15 (m, 3Н); 7,15-7,26 (m, 2H); 7,33 (d, 1H, J=16 Гц); 7,64 (d, 1H, J=8,9 Гц).
Пример 10. 1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-(пиридин-3-ил)пропен-1-он (см. прилагаемую формулу VIB 161)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-аллилокси-8-ацетилкумарина (1,93 г, 0,0075 моль) и пиридин-3-карбоксиальдегида (0,8 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из этанола и получают 0,6 г продукта с т.пл. 124-126°С. 1H-ЯМР (CDCl3) δ: 2,43 (s, 3Н); 4,65 (d, 2H, J=5,1 Гц); 4,25-4,55 (m,2H); 5,15-5,35 (m, 1H); 6,16 (s, 1H); 6,93 (d, 1H, J=8,9 Гц); 7,08 (d, 1H, J=16 Гц); 7,30 (d, 1H, J=16 Гц); 7,49 (d, 1H, J=8,9 Гц); 7,83-7,87 (m, 1H); 8,58 (d, 1H, J=5 Гц); 6,87 (s, 1H).
Пример 11. 1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-(3-метоксифенил)пропен-1-он (см. прилагаемую формулу VIB 159)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-аллилокси-8-ацетилкумарина (1,93 г, 0,0075 моль) и 3-метокси-бензальдегида (1,01 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,6 г продукта с т.пл. 61-63°С. 1H-ЯМР (CDCl3) δ: 2,43 (s, 3Н); 3,82 (s, 3Н); 4,65 (d, 2H, J=5,1 Гц); 5,20-5,42 (m, 2H); 5,82-6,02 (m, 1H); 6,16 (s, 1H); 6,90 (d, 1H, J=8,9 Гц); 7,15 (d, 1H, J=16 Гц); 6,90-7,15 (m, 3Н); 7,15 (d, 1H, J=16 Гц); 7,20-7,29 (m, 1H); 7,30 (d, 1H, J=16 Гц); 7,64 (d, 1H, J=8,9 Гц).
Пример 12. 1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-(3,4,5-триметоксифенил)пропен-1-он (см. прилагаемую формулу VIB 160)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-аллилокси-8-ацетилкумарина (1,93 г, 0,0075 моль) и 3,4,5-триметоксибензальдегида (1,47 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,8 г продукта с т.пл. 138-140°С. 1H-ЯМР (CDCl3) δ: 2,43 (s, 3Н); 3,82-3,91 (m, 9H); 4,65 (d, 2H, J=5,1 Гц); 5,25-5,40 (m, 2H); 5,90-6,02 (m, 1H); 6,16 (s, 1H); 6,74 (s, 2H); 6,90-7,15 (m, 3Н); 7,15 (d, 1H, J=16 Гц); 7,20-7,29 (d, 1H, J=16 Гц); 7,70 (d, 1H, J=8,9).
Пример 13. 1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-(3,4,5-триметоксифенил)пропен-1-он (см. прилагаемую формулу VIB 126)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-проп-2-инилокси-8-ацетилкумарина (1,92 г, 0,0075 моль) и 3,4,5-триметоксибензальдегида (1,47 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из этанола и получают 1,1 г продукта с т.пл. 191-193°С. 1H-ЯМР (CDCl3) δ: 2,45 (s, 3H); 2,53-2,56 (m, 1H); 3,83-3,85 (m, 9H); 4,82 (d, 2H, J=2,2 Гц); 6,20 (s, 1H); 6,72 (s, 2H); 6,92 (d, 1H, J=16 Гц); 7,12 (d, 1H, J=8,9 Гц); 7,15 (d, 1H, J=16Hz); 7,67 (d, 1H, J=8,9 Гц).
Пример 14. 1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-фенилпропен-1-он (см. прилагаемую формулу VIB 124)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-проп-2-инилокси-8-ацетилкумарина (1,92 г, 0,0075 моль) и бензальдегида (0,8 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из этанола и получают 0,8 г продукта с т.пл. 140-142°С. 1H-ЯМР (CDCl3 ) δ: 2,45 (s, 3H); 2,53-2,56 (m, 1H); 4,82 (d, 2H, J=2,2 Гц); 6,20 (s, 1H); 7,02 (d, 1H, J=16 Гц); 7,13 (d, 1H, J=8,9 Гц); 7,32 (d, 1H, J=16 Гц); 7,35-7,45 (m, 3H); 7,48-7,52 (m, 2H); 7,67 (d, 1H, J=8,9 Гц).
Пример 15. 1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-(пиридин-3-ил)пропен-1-он (см. прилагаемую формулу VIB 125)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-проп-2-инилокси-8-ацетилкумарина (1,92 г, 0,0075 моль) и пиридин-3-карбоксиальдегида (0,8 г, 0,0075 моль) в 95%-ном этаноле;
добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из этанола и получают 0,7 г продукта с т.пл. 203-205°С. 1H-ЯМР (CDCl3) δ: 2,45 (s, 3H); 2,53-2,56 (m, 1H); 4,82 (d, 2H, J=2,2 Гц); 6,20 (s, 1H); 7,02 (d, 1H, J=16 Гц); 7,13 (d, 1H, J=8,9 Гц; 7,32 (d, 1H, J=16 Гц); 7,28-7,35 (m, 1H); 7,69 (d, 1H, J=8,9 Гц); 7,88-7,92 (m, 1H); 8,58-8,62 (m, 1H); 8,66 (s, 1H).
Пример 16. 1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-(3-метоксифенил)пропен-1-он (см. прилагаемую формулу VIB 163)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-проп-2-инилокси-8-ацетилкумарина (1,92 г, 0,0075 моль) и 3-метокси-бензальдегида (1,01 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют. Осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,5 г продукта с т.пл. 154-156°С. 1H-ЯМР (CDCl3) δ: 2,45 (s, 3Н); 3,48 (m, 1H); 3,81 (s, 3Н); 4,82 (d, 2H, J=2,2 Гц); 6,15 (s, 1H); 6,90-7,26 (m, 5H); 7,10 (d, 1H, J=8,9 Гц); 7,65 (d, 1H, J=8,9 Гц).
Пример 17. 1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-(4-хлорфенил)пропен-1-он (см. прилагаемую формулу VIB 241)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-аллилокси-8-ацетилкумарина (1,93 г, 0,0075 моль) и 4-хлор-бензальдегида (1,05 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют; осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,1 г продукта с т.пл. 153-155°С. 1H-ЯМР (CDCl3) δ: 2,42 (d, J=1,2 Гц, 3Н), 4,65 (m, 2H), 5,2 (m, 2H), 6,15 (m, 1H), 6,91-7,61 (m, 8H).
Пример 18. 1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-(4-фторфенил)пропен-1-он (см. прилагаемую формулу VIB 240)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-проп-2-инилокси-8-ацетилкумарина (1,92 г, 0,0075 моль) и 4-фтор-бензальдегида (0,93 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют; осадок отделяют фильтрованием и сушат в вакууме.
Соединение кристаллизуют из этанола и получают 1,2 г продукта с т.пл. 185-186°С. 1H-ЯМР (CDCl3) δ: 2,43 (d, J=1,2 Гц, 3Н), 2,52 (m, 1H), 4,79 (d, J=1,2 Гц, 2H), 6,17 (d, J=1,2 Гц, 1H), 6,96-7,66 (m, 8H).
Пример 19. 1-[3-метил-7-(метокси)кумарин-8-ил]-3-(2-тиенил)пропен-1-он (см. прилагаемую формулу VIB 242)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 7-метокси-8-ацетил-3-метилкумарина (1,74 г, 0,0075 моль) и 2-тиофен-карбоксиальдегида (0,84 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют; осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,8 г продукта с т.пл. 172-173°С. 1H-ЯМР (CDCl3) δ: 2,46 (d, 3Н), 4,0 (s, 3Н), 6,21 (d, J=1,2 Гц, 1H), 6,91-7,84 (m, 7H).
Пример 20. 1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-(2,6-дихлорфенил)пропен-1-он (см. прилагаемую формулу VIB 243)
50%-ный раствор КОН (3 мл) добавляют к эквимолярному раствору 4-метил-7-аллилокси-8-ацетилкумарина (1,93 г, 0,0075 моль) и 2,6-дихлорбензальдегида (1,31 г, 0,0075 моль) в 95%-ном этаноле; добавление производят при интенсивном перемешивании при комнатной температуре. Реакционную смесь выдерживают при перемешивании в течение ночи, затем разбавляют водой и подкисляют; осадок отделяют фильтрованием и сушат в вакууме. Соединение кристаллизуют из метанола и получают 1,1 г продукта с т.пл. 149-151°С. 1H-ЯМР (CDCl3) δ: 2,41 (m, 3Н), 4,66 (m, 2H), 5,3 (m, 2H), 5,9 (m, 1H), 6,9-7,64 (m, 8H).
БИОЛОГИЧЕСКИЕ ИСПЫТАНИЯ
Соединения VIB 106 и VIB 122 были испытаны с целью определения их цитотоксичности в отношении устойчивых к лекарственным средствам раковых клеток как по отдельности, так и в сочетании с паклитакселом. Ниже представлены результаты этих исследований.
При испытаниях соединений VIB 106 и VIB 122 в отдельности было обнаружено, что они обладают сравнительно низкой цитотоксичностью (IC50>1 мкМ) в отношении устойчивых к лекарственным средствам раковых клеток.
Затем соединения испытывали в сочетании с паклитакселом для определения цитостатической активности в отношении стойких к лекарственным средствам клеток рака молочной железы MDA-435/LCC6-MDR. В этих экспериментах упомянутые соединения применяли в сочетании с паклитакселом, концентрация паклитаксела составляла 0,1 мкМ; при применении паклитаксела совместно с каждым из соединений VIB 106 и VIB 122 его IC50 понижается в 3-5 раз, т.е. с 426 нМ до 130-86 нМ, по сравнению с применением индивидуального паклитаксела. Следовательно, в присутствии этих соединений паклитаксел может проявить свою высокую ингибирующую активность в отношении устойчивых к лекарственным средствам раковых клеток.
Методика эксперимента
Испытания заключались в одновременной обработке клеток MDA-435/LCC-MDR паклитакселом в присутствии или отсутствии испытываемых соединений (1 мкМ) in vitro в течение 72 ч. Оценку цитотоксичности, т.е. ингибирования роста клеток, производили в соответствии с методикой Скехана и др. (Skehan et al.), описанной в J.Nat.Cancer Inst. 82, 1107, 1990.
Вкратце методику можно описать следующим образом. Клетки высевали в 96-луночную чашку Петри в количестве 400-1200 клеток на лунку и перед введением лекарственного средства инкубировали при 37°С в течение 15-18 ч для обеспечения прикрепления культуры к лунке. Испытываемые соединения растворяли в 100%-ном диметилсульфоксиде и затем разбавляли средой RPMI-1640, содержащей 10 мМ HEPES (N-2-гидроксиэтилпиперазин-N'-2-гидрокси-пропансульфокислоты). После 72 ч инкубации в каждую лунку добавляли 100 мкл 50%-ной трихлоруксусной кислоты, охлажденной льдом, и инкубировали в течение 1 ч при 4°С. Затем чашки промывали 5 раз водопроводной водой для удаления трихлоруксусной кислоты, низкомолекулярных продуктов метаболизма и сывороточных протеинов. Добавляли в каждую лунку 50 мкл сульфородамина В (0,4%). После 5-минутной инкубации при комнатной температуре чашки промывали 5 раз 0,1%-ной уксусной кислотой и сушили на воздухе. Связанный краситель растворяли трис(гидроксиметил)-метиламинометаном (TRIS) (основание, 10 мМ, рН 10,5) в течение 5 мин на вращательном приборе для встряхивания. Оптическую плотность измеряли на длине волны 570 нм.
Пример 21 композиции в форме таблетки на основе соединения по Примеру 8
название | год | авторы | номер документа |
---|---|---|---|
ХАЛКОНЫ И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ИХ ОСНОВЕ | 2000 |
|
RU2252938C2 |
ПРОИЗВОДНЫЕ ФЛАВОНОВ, КСАНТОНОВ И КУМАРИНОВ И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ИХ ОСНОВЕ | 2000 |
|
RU2252221C2 |
ХАЛКОНЫ, ОБЛАДАЮЩИЕ АНТИПРОЛИФЕРАТИВНОЙ АКТИВНОСТЬЮ | 1998 |
|
RU2203883C2 |
ПРОИЗВОДНЫЕ ХИНАЗОЛИНА | 2002 |
|
RU2302244C2 |
ПРОИЗВОДНЫЕ 4Н-БИС[1,2,5]ОКСАДИАЗОЛО[3,4-b:3',4'-f]АЗЕПИН-8,9-ДИАМИНА И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2012 |
|
RU2499799C2 |
2,5-ДИЗАМЕЩЕННЫЕ ТЕТРАГИДРОФУРАНЫ ИЛИ ТЕТРАГИДРОТИОФЕНЫ, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ИХ ОСНОВЕ И СПОСОБЫ ЛЕЧЕНИЯ | 1995 |
|
RU2190607C2 |
ПРОИЗВОДНЫЕ АЗОЛА, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ИХ ОСНОВЕ, ПРОМЕЖУТОЧНЫЕ СОЕДИНЕНИЯ | 1995 |
|
RU2161612C2 |
ТИЕНОПИРИМИДИНОВЫЕ ПРОИЗВОДНЫЕ И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ | 1994 |
|
RU2142275C1 |
СИНТЕЗ КАРБАМОИЛПИРИДОНОВЫХ ИНГИБИТОРОВ ИНТЕГРАЗЫ ВИЧ И ПРОМЕЖУТОЧНЫХ СОЕДИНЕНИЙ | 2009 |
|
RU2527451C2 |
ПРОМЕЖУТОЧНОЕ ПРОИЗВОДНОЕ ЦЕФАЛОСПОРИНА И СПОСОБ ПОЛУЧЕНИЯ ЦЕФАЛОСПОРИНА | 1995 |
|
RU2150471C1 |
Изобретение относится к соединениям формулы (I) или их фармацевтически приемлемым солям или сольватам, где Ar представляет собой замещенную или незамещенную (предпочтительно ароматическую) карбоциклическую или гетероциклическую группу, причем упомянутая карбоциклическая или гетероциклическая группа содержит в циклической структуре 5 или 6 атомов, причем гетероатом выбран из группы состоящей из N и S, а любые заместители при группе Ar выбраны независимо друг от друга из группы, состоящей из Cl, Br, F, и OR10, где R10 представляет собой насыщенный или ненасыщенный низший углеводородный радикал C1-С6 нормального или разветвленного строения; R представляет собой OR10, где R10 соответствует вышеприведенному определению; и R1 представляет собой низший углеводородный радикал C1-С6 нормального или разветвленного строения; при условии, что если R1-СН3 и R-ОСН3 или ОН, то группа Ar не может представлять собой 4-метоксифенил или 3,4-диметоксифенил. Предложен компонент лекарственного средства для лечения или профилактики новообразований. Также предложена фармацевтическая композиция, обладающая антипролиферативной активностью, содержащая эффективное количество одного или нескольких соединений формулы (I) в сочетании с одной или несколькими фармацевтически приемлемыми добавками. Технический результат - халконовые кумарины, обладающие повышенным антипролиферативным действием в отношении чувствительных раковых клеток, клеток, устойчивых к обычным химиотерапевтическим средствам, в том числе к противоопухолевым лекарственньм средствам последнего поколения, паклитакселу и доцетакселу. 4 с. и 20 з.п. ф-лы, 1 табл.
или их фармацевтически приемлемые соли либо сольваты, где
Ar представляет собой замещенную или незамещенную (предпочтительно ароматическую) карбоциклическую или гетероциклическую группу, причем упомянутая карбоциклическая или гетероциклическая группа содержит в циклической структуре 5 или 6 атомов, причем гетероатом выбран из группы, состоящей из N и S, а любые заместители при группе Ar выбраны независимо друг от друга из группы, состоящей из Cl, Br, F и OR10, где R10 представляет собой насыщенный или ненасыщенный низший углеводородный радикал C1-C6 нормального или разветвленного строения;
R представляет собой OR10, где R10 соответствует вышеприведенному определению;
R1 представляет собой низший углеводородный радикал С1-С6 нормального или разветвленного строения;
при условии, что если R1-СН3 и R-ОСН3 или ОН, то группа Ar не может представлять собой 4-метоксифенил или 3,4-диметоксифенил.
Ar представляет собой фенил, который может быть незамещенным или замещенным одним, двумя или тремя заместителями, каждый из которых независимо от других выбран из группы, в которую входят Cl, Br, F и Оме; тиенил, 3-пиридил и 4-пиридил;
R представляет собой OCH2R1, где R1 выбран из группы, состоящей из -СН=СМе2, -СМе=СН2, -СН=CH2 и -С≡СН.
1-[4-метил-7-(2-метилпроп-1-енилокси)кумарин-8-ил]-3-(пиридин-3-ил)-пропен-1-он (VIB 106),
1-[4-метил-7-(3-метилбут-2-енилокси)кумарин-8-ил]-3-фенилпропен-1-он (VIB 119),
1-[4-метил-7-(3-метилбут-2-енилокси)кумарин-8-ил]-3-(3,4,5-триметоксифенил)пропен-1-он (VIB 120),
1-[4-метил-7-(2-метилаллилокси)кумарин-8-ил]-3-(пиридин-3-ил)пропен-1-он (VIB 122),
1-[4-метил-7-(2-метилаллилокси)кумарин-8-ил]-3-фенилпропен-1-он (VIB 121),
1-[4-метил-7-(2-метилаллилокси)кумарин-8-ил]-3-(3-метоксифенил)пропен-1-он (VIB 162),
1-[4-метил-7-(2-метилаллилокси)кумарин-8-ил]-3-(3,4,5-триметоксифенил)пропен-1-он (VIB 123),
1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-фенилпропен-1-он (VIB 158),
1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-(пиридин-3-ил)пропен-1-он (VIB 161),
1-[4-метил-7-(аллилокси)кумарин-8-ил]-3-(3-метоксифенил)пропен-1-он(VIB 159),
1-[4метил-7-(аллилокси)кумарин-8-ил]-3-(3,4,5-триметоксифенил)пропен-1-он (VIB 160),
1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-(3,4,5-триметоксифенил)пропен-1-он (VIB 126),
1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-фенилпропен-1-он (VIB 124),
1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-(пиридин-3-ил)пропен-1-он (VIB 125) и
1-[4-метил-7-(проп-2-инилокси)кумарин-8-ил]-3-(3-метоксифенил)пропен-1-он (VIB 163).
или его фармацевтически приемлемой солью либо сольватом, где
Ar представляет собой замещенную или незамещенную (предпочтительно ароматическую) карбоциклическую или гетероциклическую группу, причем упомянутая карбоциклическая или гетероциклическая группа содержит в циклической структуре 5 или 6 атомов, причем гетероатом выбран из группы, состоящей из N и S, а любые заместители при группе Ar выбраны независимо друг от друга из группы, состоящей из Cl, Br, F и OR10, где R10 представляет собой насыщенный или ненасыщенный низший углеводородный радикал C1-С6 нормального или разветвленного строения;
R представляет собой OR10, где R10 соответствует вышеприведенному определению;
R1 представляет собой низший углеводородный радикал С1-С6 нормального или разветвленного строения;
при условии, что если R1-СН3 и R-ОСН3 или ОН, то группа Ar не может представлять собой 4-метоксифенил или 3,4-диметоксифенил.
СПОСОБ ИЗМЕРЕНИЯ ВОЛНОВЫХ КОЛЕБАНИЙ НА ОТКРЫТОЙ ВОДНОЙ ПОВЕРХНОСТИ | 2009 |
|
RU2387956C1 |
KHAN M.S.Y | |||
et al | |||
Synthesis of new alpha-pyronoflavones and related products | |||
Part II | |||
Indian J | |||
Chem | |||
Способ изготовления фанеры-переклейки | 1921 |
|
SU1993A1 |
SHARAN P | |||
et al | |||
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Indian J | |||
Chem | |||
Soc | |||
Механизм для сообщения поршню рабочего цилиндра возвратно-поступательного движения | 1918 |
|
SU1989A1 |
SANGWAN, NARESH |
Авторы
Даты
2005-12-20—Публикация
2000-08-28—Подача