СПОСОБ МИКРОЛЕГИРОВАНИЯ СТАЛИ АЗОТОМ Российский патент 2005 года по МПК C21C7/04 

Описание патента на изобретение RU2266338C2

Изобретение относится к области черной металлургии, а именно к микролегированию стали азотом.

Известен способ легирования стали азотом, включающий насыщение расплава газообразным азотом, когда одновременно с продувкой стали азотом в зону всплывающих пузырей вводят алюминий (А.с. СССР №918315, С 21 С 7/00, опубл. 07.04.82, бюл. №13).

К недостаткам известного способа следует отнести сложность определения усвоения азота за время обработки металла в ковше, время растворения алюминия в жидком металле зависит от многих факторов (температура, окисленность металла), невозможность получения требуемого содержания азота в узких пределах.

Наиболее близким аналогом заявляемого изобретения является способ микролегирования стали азотом, включающий выплавку металла в сталеплавильном агрегате, раскисление, продувку металла в ковше азотом и последующую разливку его в изложницы, струю металла в процессе разливки дополнительно обдувают азотом с интенсивностью 0.005-0.020 нм3/т мин, подаваемым непрерывным коаксиально струе металла потоком с внутренним диаметром, равным 2,0-3,5 диаметра струи металла, причем отношение расхода азота для продувки в ковше к расходу азота на обдув струи равно 1:(0,15-0,75) (А.с. СССР №1731826, С 21 С 7/00, опубл. 07.05.92, бюл. №17).

Признаки ближайшего аналога, совпадающие с существенными признаками заявляемого изобретения: выплавка металла в сталеплавильном агрегате, раскисление, продувка металла в ковше азотом, последующая разливка.

Известный способ не обеспечивает получение требуемого технического результата по следующим причинам.

Найденные в известном способе технологические приемы введения азота, в особенности в изложницу, направлены прежде всего на получение азота в стали в широком диапазоне концентраций.

Данный прием не обеспечивает получение равномерного распределения азота по объему металла и требуемого качества поверхности готового проката.

Кроме того, азот легче воздуха, следовательно, в полости изложницы находится воздух, кислород которого будет окислять металл. Это приводит к увеличению количества неметаллических включений, которые за время наполнения изложницы не успевают всплывать, и увеличению запороченности металла поверхностными дефектами и соответственно снижению выхода годного.

В основу изобретения поставлена задача усовершенствования способа микролегирования стали азотом при регламентированном содержании алюминия 0,005-0,030%, в котором азот вводят в две стадии: на первой стадии - за счет присадки в ковш азотсодержащего ферросплава во время выпуска металла и его раскисления, а на второй стадии - за счет продувки газообразным азотом, снижения количества неметаллических включений и получения однородной мелкодисперсной структуры обеспечивается требуемое качество поверхности непрерывнолитой заготовки, увеличивается производительность МНЛЗ.

Поставленная задача решается тем, что в способе микролегирования стали азотом, включающем выплавку металла в сталеплавильном агрегате, раскисление, продувку металла в ковше азотом и его последующую разливку, согласно изобретению азот вводят в две стадии: на первой стадии - за счет присадки в ковш азотсодержащего ферросплава во время выпуска металла и его раскисления, а на второй стадии - за счет продувки газообразным азотом с расходом, определяемым из соотношения:

τN=390,63×QN тр.-2272,29×QNпром.+134,06×QAL+13,52,

где τN - время продувки азотом, мин;

QN тр. - требуемое содержания азота в стали, %;

QN пром - содержание азота в пробе перед продувкой, %;

QAL - содержание алюминия в готовой стали, %;

390,63; 2272,29; 134,06; 13,52 - эмпирические коэффициенты, полученные опытным путем.

Сущность заявляемого технического решения заключается в регламентации технологического процесса производства стали с содержанием алюминия 0,005-0,030%, когда азот вводится в две стадии. На первой стадии за счет присадки в ковш азотсодержащего ферросплава во время выпуска металла и его раскисления, а на второй стадии - за счет продувки газообразным азотом на агрегате доводки стали.

Выбор продолжительности продувки газообразным азотом позволяет получить требуемое содержание азота в готовой стали.

Данный способ иллюстрируется следующим примером.

Выплавлялась сталь марки 0401 по ТП 14-101-382-01. В кислородный конвертор завалили 98 тонн металлолома, 1,7 тонны меди и залили 299 тонн жидкого чугуна, содержащего 4,2% углерода, 0,42% кремния, 0,13% марганца, 0,014% серы и 0,042% фосфора.

Плавка продувалась в 370-т кислородном конверторе.

Выпуск металла производился в сталеразливочный ковш, на дно которого присадили азотированный феррохром в количестве 350 кг (1 кг/т).

Во время выпуска в сталеразливочный ковш присадили 17,38 т ферросилиция, который был предварительно прогрет в печах прокаливания ферросплавов. После отдачи ферросилиция в ковш присадили 2,4 т извести.

Температура металла в сталеразливочном ковше составила 1677°С.

Далее ковш с металлом передан на установку усреднительной продувки стали аргоном (УУПС). По приходу металла на УУПС осуществили усреднительную продувку металла аргоном в течение 7 минут. После окончания продувки температура металла составила 1634°С, и была отобрана проба металла, которая содержала 0,029% углерода, 2,977% кремния, 0,115% марганца, 0,012% серы, 0,010% фосфора, 0,386% меди, 0,008% алюминия и 0,0045% азота.

После получения результатов химического анализа провели корректировку химического состава по содержанию кремния, марганца, меди и алюминия. Для этого в сталеразливочный ковш присадили: силикомарганца СМn17 - 140 кг, ферросилиция ФС65 - 480 кг, меди - 150 кг и алюминиевой катанки - 100 кг.

Корректировку химического состава металла по содержанию азота производили продувкой металла газообразным азотом из соотношения:

τN=390,63×0,0057-2272,29×0,0045+134,06×0,019+13,52=8 мин.

После продувки металла отобрали пробу металла. Содержание азота в пробе составило 0,059%.

После этого плавку передали на комбинированную установку вакуумирования стали (КУВС), где металл вакуумировался в течение 11 минут с коэффициентом циркуляции 2,5, после чего плавку передали на разливку.

Применение предлагаемого способа микролегирования стали азотом позволяет получить требуемое содержание азота в стали, обеспечить минимальную отсортировку непрерывнолитой заготовки по поверхностным дефектам, увеличить производительность МНЛЗ, производство.

Похожие патенты RU2266338C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ПСЕВДОКИПЯЩЕЙ СТАЛИ 2006
  • Сеничев Геннадий Сергеевич
  • Сарычев Александр Валентинович
  • Сарычев Александр Федорович
  • Николаев Олег Анатольевич
  • Павлов Владимир Викторович
  • Ивин Юрий Александрович
  • Ушаков Сергей Николаевич
RU2312903C2
СПОСОБ ПРОИЗВОДСТВА БОРСОДЕРЖАЩЕЙ СТАЛИ 2011
  • Сарычев Борис Александрович
  • Пехтерев Сергей Валерьевич
  • Ивин Юрий Александрович
  • Казятин Константин Владимирович
  • Павлов Владимир Викторович
  • Крюкова Наталья Викторовна
RU2492248C2
СПОСОБ ПРОИЗВОДСТВА СТАЛИ 2003
  • Носов С.К.
  • Рябов И.Р.
  • Крупин М.А.
  • Кушнарев А.В.
  • Ильин В.И.
  • Данилин Ю.А.
  • Галченков В.В.
  • Шеховцов Е.В.
  • Кромм В.В.
  • Шур Е.А.
  • Никитин С.В.
RU2233339C1
СПОСОБ ВЫПЛАВКИ НИЗКОУГЛЕРОДИСТОЙ ТИТАНСОДЕРЖАЩЕЙ СТАЛИ 2003
  • Рашников В.Ф.
  • Сеничев Г.С.
  • Бодяев Ю.А.
  • Дьяченко В.Ф.
  • Сарычев А.Ф.
  • Николаев О.А.
  • Павлов В.В.
  • Ивин Ю.А.
  • Степанова А.А.
RU2243269C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОУГЛЕРОДИСТОЙ СТАЛИ КОРДОВОГО КАЧЕСТВА 2008
  • Дубровский Борис Александрович
  • Ушаков Сергей Николаевич
  • Куницын Глеб Александрович
  • Ивин Юрий Александрович
  • Казятин Константин Владимирович
  • Павлов Владимир Викторович
RU2378391C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ ДЛЯ МЕТАЛЛОКОРДА 2003
  • Угаров А.А.
  • Шляхов Н.А.
  • Потапов И.В.
  • Гонтарук Е.И.
  • Фомин В.И.
  • Лехтман А.А.
  • Сидоров В.П.
  • Давыдов А.В.
  • Пикулин В.А.
  • Феоктистов Ю.В.
  • Труфанов Ю.В.
  • Фетисов В.П.
  • Куличев Л.А.
RU2265064C2
СПОСОБ ВЫПЛАВКИ И ВНЕПЕЧНОЙ ОБРАБОТКИ СТАЛИ 2006
  • Сарычев Александр Валентинович
  • Великий Андрей Борисович
  • Ивин Юрий Александрович
  • Павлов Владимир Викторович
RU2343207C2
СПОСОБ ПРОИЗВОДСТВА НИЗКОУГЛЕРОДИСТОЙ СТАЛИ 2010
  • Алексеев Леонид Вячеславович
  • Снегирев Владимир Юрьевич
  • Валиахметов Альфед Хабибуллаевич
  • Чайковский Юрий Антонович
  • Сарычев Борис Александрович
  • Николаев Олег Анатольевич
  • Искаков Ильдар Фаритович
RU2437942C1
СПОСОБ ПРОИЗВОДСТВА УГЛЕРОДИСТОЙ СТАЛИ 2006
  • Павлов Владимир Викторович
  • Хабибулин Дим Маратович
RU2304622C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ (ВАРИАНТЫ) 2014
  • Никонов Сергей Викторович
  • Ключников Александр Евгеньевич
  • Краснов Алексей Владимирович
  • Салиханов Павел Алексеевич
  • Курдюмов Георгий Евгеньевич
  • Беляев Алексей Николаевич
RU2577885C1

Реферат патента 2005 года СПОСОБ МИКРОЛЕГИРОВАНИЯ СТАЛИ АЗОТОМ

Изобретение относится к области металлургии, а именно к микролегированию стали азотом. Способ включает выплавку металла в сталеплавильном агрегате, выпуск металла в ковш, раскисление, отбор пробы на содержание азота и последующую его разливку. Микролегирование стали азотом при регламентированном содержании алюминия 0,005-0,03% осуществляют в две стадии: во время выпуска металла и его раскисления предварительно насыщают азотом за счет присадки азотированного ферросплава, а окончательную корректировку химического состава металла по содержанию азота производят продувкой газообразным азотом с расходом, определяемым из соотношения: τN=390,63 QN тр. - 2272,29 QN пром. + 134,06 QAL + 13, 52, где τN - время продувки азотом, мин.; QN тр. - требуемое содержание азота в стали, %; QN пром. - содержание азота в пробе перед продувкой, %; QAL - содержание алюминия в готовой стали, %. Изобретение позволяет снизить количество неметаллических включений, получить однородную мелкодисперсную структуру и требуемое качество поверхности непрерывнолитой заготовки.

Формула изобретения RU 2 266 338 C2

Способ микролегирования стали азотом, включающий выплавку металла в сталеплавильном агрегате, выпуск металла в ковш, раскисление, отбор пробы на содержание азота и последующую его разливку, отличающийся тем, что микролегирование стали азотом при регламентированном содержании алюминия 0,005-0,03% осуществляют в две стадии: во время выпуска металла и его раскисления предварительно насыщают азотом за счет присадки азотированного ферросплава, а окончательную корректировку химического состава металла по содержанию азота производят продувкой газообразным азотом с расходом, определяемым из соотношения:

τN=390,63 QN тр. - 2272,29 QN пром + 134,06 QAL + 13,52,

где τN - время продувки азотом, мин.;

QN тр. - требуемое содержание азота в стали, %;

QN пром. - содержание азота в пробе перед продувкой, %;

QAL - содержание алюминия в готовой стали, %;

390,63, 2272,29, 134,06, 13,52 - эмпирические коэффициенты, полученные опытным путем.

Документы, цитированные в отчете о поиске Патент 2005 года RU2266338C2

Способ микролегирования стали азотом 1990
  • Бурлака Геннадий Викторович
  • Монастырская Алевтина Ивановна
  • Новолодский Виктор Павлович
  • Пан Александр Валентинович
  • Третьяков Михаил Андреевич
  • Паляничка Владимир Александрович
  • Спирин Виктор Андреевич
  • Гордиенко Михаил Силович
  • Ильин Валерий Иванович
  • Топычканов Борис Иванович
SU1731826A1
СПОСОБ ЛЕГИРОВАНИЯ СТАЛИ АЗОТОМ 0
  • Изобретени В. Г. Куклев, А. Г. Шалимов, С. Г. Воинов, А. И. Шмырев, Г. Н. Окороков, В. К. Шатунов, К. К. Жданович Э. В. Верховцев
  • Вители Центральный Научно Исследовательский Институт Черной Металлургии И. П. Бардина Ижевский Металлургический Завод
SU371278A1
Способ легирования стали азотом 1980
  • Поволоцкий Давид Яковлевич
  • Токовой Олег Кириллович
  • Шулькин Марк Лазоревич
  • Рожков Сергей Васильевич
  • Абезгауз Марк Владимирович
  • Ерохин Владимир Дмитриевич
  • Синельников Вячеслав Алексеевич
SU918315A1
Способ получения высокопрочной стали 1979
  • Зеличенок Борис Юрьевич
  • Милюц Валерий Георгиевич
  • Мажарцев Федор Тимофеевич
  • Мулько Геннадий Николаевич
  • Кривошейко Аркадий Александрович
  • Прогонов Вячеслав Васильевич
  • Бреус Валентин Михайлович
  • Косой Леонид Финеасович
  • Литвиненко Денис Ануфриевич
SU857271A1
Цифровой термометр 1985
  • Тер-Мартиросян Мартирос Григорьевич
  • Шахкамян Самвел Седракович
SU1296856A1

RU 2 266 338 C2

Авторы

Сеничев Г.С.

Дьяченко В.Ф.

Сарычев А.Ф.

Николаев О.А.

Сарычев Б.А.

Чигасов Д.Н.

Павлов В.В.

Даты

2005-12-20Публикация

2004-02-05Подача