Изобретение относится к машиностроению, а именно к установкам, предназначенным для производства электроэнергии с использованием низкотемпературных перепадов в окружающей среде, а также для производства водорода и кислорода.
Наиболее близким техническим решением к заявляемому объекту является энергетическая установка по патенту РФ №2200863, Кл. F 02 G 1/043, G 06 G 7/63 от 04.04.2001, содержащая термосорбционные элементы, которые взаимодействуют с теплообменниками, подключаемыми попеременно к теплоносителю и хладоносителю через распределители.
Недостатком ее является отсутствие возможности использования низкотемпературных перепадов в окружающей среде.
Задачей изобретения является повышение эффективности энергетической установки путем использования низкотемпературных перепадов в окружающей среде за счет применения термосорбционных компрессоров (ТСК), использующих эффекты сорбции и десорбции водорода в металлогидридах, что позволит применять ее в высоких широтах, где летом и зимой имеется значительный перепад между температурами воздуха и водной среды.
Это достигается тем, что в энергетической установке, содержащей термосорбционные компрессоры, взаимодействующие с теплообменниками, подключаемыми попеременно к теплоносителю и хладоносителю через распределители, термосорбционные компрессоры выполнены в виде реакторов с порошком металлогидрида, насыщенного водородом, которые взаимодействуют с теплообменниками с жидким теплоносителем и хладоносителем, попеременно подключаемым к реакторам через двухпозиционные электромагнитные гидрораспределители, при этом реакторы связаны газовыми полостями гидрогазовых приводов, а гидравлические полости газогидравлических приводов через двухпозиционные электромагнитные гидрораспределители с полостями высокого и низкого давления гидромотора с объемным регулированием скорости вращения, причем газогидравлические приводы подсоединены при десорбции к магистралям высокого давления гидромотора, а при сорбции - к магистралям низкого давления, а переключение гидрораспределителей к реакторам с теплоносителем на хладоноситель и гидрораспределителей связанных гидравлических полостей газогидравлических приводов происходит через промежутки времени, равные периоду десорбции - сорбции одного реактора, деленному на общее число реакторов (например, 7 или 9), при этом источник с более высокой температурой отдает тепло теплоносителю, а с более низкой температурой - хладоносителю.
На фиг.1 представлена схема блока реакторов, взаимодействующих с теплоносителем и хладоносителем, на фиг.2 представлена схема забора тепла и холода, на фиг.3 представлена схема энергетической установки, работающей с электростанцией.
Энергетическая установка состоит из распределителя 1, к которому подходят гидролинии теплоносителя Т (подача - слив) и хладоносителя Х (подача - слив). Цепочка для одного реактора включает в себя: реактор 2, теплообменник 3, газогидравлический привод 4. Гидравлические выходы всех газогидравлических приводов содержат расходомеры 5, эти линии подсоединены к гидрораспределителю 6. Из распределителя 6 выходят две гидролинии 7 на гидромотор 11. На обеих гидролиниях установлены гидропневмоаккумуляторы 8, 9, заряженные на различные давления. Они включаются и выключаются двухпозиционными электромагнитными клапанами 10. К обеим гидролиниям подключена система подпитки 12, состоящая из подпиточного насоса с двумя обратными клапанами. Гидромотор 11 связан с электрогенераторами 13. Системой электрогидравлических распределителей 1, 6 и клапанов 10 управляет регулятор 14.
Схема забора тепла и холода включает в себя два элемента окружающей среды: вода и воздух. Эти среды могут быть как теплоносителем, так и хладоносителем (в зависимости от времени года). Вода может браться из любого водоема: моря, озера, реки. По замыслу настоящей заявки это могут быть воды Северного ледовитого океана, Баренцева и Берингова морей, северных озер и рек. Вода забирается и сбрасывается через трубопроводы 1 насосом 2. В теплообменнике 3 она обменивается теплом с внутренним контуром 4, содержащим питающий насос 5. Вторая среда - воздух. Воздух по трубопроводам нагнетается компрессором или вентилятором 8 в теплообменник 6, где воздух взаимодействует с внутренним контуром 9, снабженным питающим насосом 10. 11 - основная установка, показанная на фиг.1.
Электрогенератор 13 - это основное устройство на фиг.1. С выхода 11 (фиг.2) выдается электроэнергия. Контуры 3 и 9 на фиг.2 - это трубопроводы Т и Х на фиг.1, причем они могу меняться местами.
С выхода устройства 1 (15 на фиг.1 и 12 на фиг.2) электроэнергия подается на электролизер 2, где вода разлагается на водород и кислород. Водород подается в металлогидридный накопитель 3, а кислород - на кислородную станцию 4 (фиг.3). Из 3 и 4 водород и кислород подаются на электростанцию 5 на водородно-кислородных топливных элементах. С выхода электростанции 5 также как с выхода устройства 1 электроэнергия подается на трансформаторную подстанцию 6, откуда раздается потребителям.
Энергетическая установка работает следующим образом.
В зависимости от времени года водяной и воздушный контуры теплообмена меняются ролями. Зимой теплоносителем является вода, а хладоносителем - воздух. Летом теплоносителем является воздух, а хладоносителем - вода. В переходное время года - весной и осенью, когда перепады температуры малы или отсутствуют, установка работает за счет выработанного и накопленного электролизером 2 (фиг.3) водорода в металлогидридном накопителе 3 (фиг.3) и кислорода из кислородной стации (фиг.3)
Работа каждого из реакторов происходит следующим образом. Реакторы 2, распределители 1 циклически подключаются к теплоносителю Т и хладоносителю X. За период работы одного реактора 2 в режиме десорбции - сорбции, когда сначала распределитель 1 включил первый реактор на десорбцию, т.е. в теплообменник подан теплоноситель Т, но через газогидравлический привод 4 в распределитель 6 пойдет расход рабочей жидкости, контролируемый расходомером 5, он подается в магистраль высокого давления гидромотора 11. Когда расход десорбции, измеряемый расходомером 5, упадет до нуля в момент αТ, где 0<α<1, распределитель переключит регулятором 14 реактор 2 на сорбцию путем подачи хладоносителя X, а распределитель 6 переключит гидравлическую полость газогидравического привода 4 на магистраль низкого давления гидромотора 11. Когда расходомер 5 по окончании полного периода τ покажет, что расход сорбции обращается в нуль, распределитель 1 переключит реактор 2 на теплоноситель Т и для первого цикл повторится. Эти процессы будут повторяться во втором реакторе со сдвигом τ/n (десорбция) и τ/n+ατ/n (сорбция), в третьем реакторе 2τ/n и 2τ/n+2ατ/n и т.д. в пределах полного цикла переключений τ. Управление происходит от управляющих сигналов регулятора 14 по сигналам от расходомеров 5, как датчиков обратной связи. От подпиточного насоса с обратными клапанами 12 осуществляется подпитка магистралей 7 гидромотора 11. Давление подпитки обеспечивает нужный уровень давления. Необходимый перепад обеспечивается включением от регулятора 14 гидроаккумулятора 8 (среднее давление) или 9 (высокое давление). Включение - выключение гидроаккумуляторов обеспечивается двухпозиционными клапанами 10 от регулятора 14. Возможна также комбинация: включение 8 на линии низкого давления и 9 на линии высокого давления. Магистрали 7 низкого и высокого давления гидромотора могут меняться местами. При перемене Т и Х летом и зимой постоянство скорости и однонаправленное вращение гидромотора 11 обеспечивается органом регулирования рабочего объема гидромотора от регулятора 14.
Работа теплообменной системы построена следующим образом (фиг.2). В водоем погружены трубы 1, всасываемая и нагнетаемая насосом 2 вода подается в теплообменник 3, откуда трубы внутреннего контура с незамерзающей рабочей жидкостью обеспечивают отдачу тепла (холода) через распределитель 1 на фиг.1. Т - на фиг.1 в зимнее время. Схема подачи воздуха аналогична. По пневмомагистралям 7 (фиг.2) компрессором (или вентилятором) 8 воздух подается в теплообменник 6, откуда две магистрали внутреннего контура с незамерзающей рабочей жидкостью через распределитель (фиг.1) подаются на реакторы 2. В зимнее время это контур X.
Летом магистрали Т и Х меняются местами. Весной и осенью существует период, когда металлогидридные реакторы не работают из-за малого перепада температуры. Тогда используется энергия, запасенная в аккумуляторах.
Схему аккумулирования энергии поясняет фиг.3. Из системы фиг.1 вырабатываемая генератором 13 электроэнергия поступает в электролизер 2, который разлагает воду на водород и кислород. Водород поступает в металлогидридный накопитель 3, а кислород - на кислородную станцию 4. Из 3 и 4 водород и кислород подаются на топливно-элементную электростанцию 5. Электроэнергия с системы 1 на фиг.3 (т.е. с генератора 13 фиг.1) и электроэнергия с топливно-элементной станции 5 поступают на трансформаторную подстанцию 6, где постоянный ток преобразуется в переменный и идет на потребление.
В зависимости от температурного перепада между теплоносителем и хладоносителем и перемены их функций возможны различные перепады между гидролиниями высокого и низкого давления гидромотора.
Сочетания включения гидропневматических аккумуляторов, система подпитки и установка регулирующего органа создают необходимые условия для поддержания однонаправленного вращения с постоянной скоростью, что существенно повышает производительность установки в целом.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБЫ РАБОТЫ ВОДОРОДНЫХ ОБРАТИМЫХ ТЕРМОХИМИЧЕСКИХ ЦИКЛОВ И УСТРОЙСТВА ДЛЯ ИХ РЕАЛИЗАЦИИ НА БАЗЕ МЕТАЛЛОГИДРИДНЫХ ТЕХНОЛОГИЙ | 2012 |
|
RU2524159C2 |
СПОСОБ ВЫДЕЛЕНИЯ И КОМПРИМИРОВАНИЯ ВОДОРОДА ИЗ ОТХОДЯЩИХ ГАЗОВ ПИРОЛИЗА ПРИРОДНОГО ГАЗА | 2023 |
|
RU2821782C1 |
Энергетическая установка с топливными элементами | 2023 |
|
RU2811083C1 |
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА (ВАРИАНТЫ) | 2004 |
|
RU2282040C2 |
СПОСОБ ХРАНЕНИЯ И ПОДАЧИ ГАЗООБРАЗНОГО ВОДОРОДА | 2007 |
|
RU2381413C9 |
ЛИНЕЙНЫЙ ПРИВОД | 2011 |
|
RU2499163C2 |
СОРБЦИОННЫЙ ТЕРМОТРАНСФОРМАТОР | 1991 |
|
RU2008579C1 |
Способ работы термосорбционного компрессора | 1985 |
|
SU1326850A1 |
МЕТАЛЛОГИДРИДНАЯ ПАРА СПЛАВОВ ДЛЯ ТЕПЛОВОГО НАСОСА | 2004 |
|
RU2256718C1 |
СПОСОБ РАБОТЫ МЕТАЛЛОГИДРИДНОГО ТЕПЛОВОГО НАСОСА | 1999 |
|
RU2169887C2 |
Энергетическая установка предназначена для использования в производстве электроэнергии. Энергетическая установка содержит термосорбционные компрессоры. Последние выполнены в виде реакторов с порошком металлогидрида. Реакторы взаимодействуют с теплообменниками с жидким теплоносителем и хладоносителем. Реакторы связаны газовыми полостями гидрогазовых приводов. Гидравлические полости газогидравлических приводов связаны через двухпозиционные электромагнитные гидрораспределители с полостями высокого и низкого давления гидромотора с объемным регулированием скорости вращения. Газогидравлические приводы подсоединены при десорбции к гидролинии высокого давления гидромотора, а при сорбции - к гидролинии низкого давления. При переключении гидрораспределителей к реакторам источник с более высокой температурой отдает тепло теплоносителю, а с более низкой температурой - хладоносителю. Обеспечивается повышение эффективности энергетической установки путем использования низкотемпературных перепадов в окружающей среде за счет применения термосорбционных компрессоров (ТСК). 3 з. п. ф-лы, 3 ил.
ДВИГАТЕЛЬ С ВНЕШНИМ ПОДВОДОМ ТЕПЛОТЫ | 2001 |
|
RU2200863C2 |
Авторы
Даты
2005-12-20—Публикация
2004-03-30—Подача