СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ Российский патент 2006 года по МПК C21C5/28 

Описание патента на изобретение RU2275430C2

Изобретение относится к черной металлургии, а именно к способам производства стали в кислородных конвертерах со сниженной долей чугуна или при использовании химически холодных чугунов.

Известен способ выплавки стали в конвертере (Патент РФ №2222605). Способ включает подачу в конвертер металлошихты в виде стального лома и жидкого чугуна, продувку расплава кислородом, подачу в конвертер шлакообразующих материалов и углеродсодержащего материала, причем углеродсодержащего материала подают в пределах 0,25-1,3 кг/т.

Известен также способ выплавки стали в конвертере (Патент РФ №2048533). Способ включает подачу в кислородный конвертер металлического лома, ввод в ванну углеродсодержащих теплоносителей - возвратную шихту печей графитизации (65-90 мас.%), шлакообразующих, заливку жидкого чугуна и продувку металла кислородом. При этом в качестве разжижителя шлака используют пыль электрофильтров электролизного производства алюминия (10-35 мас.%). Теплоноситель и разжижитель загружают в виде брикетов.

Известен способ выплавки стали с присадкой в ванну конвертера перед продувкой горючих сланцев (А.С. СССР №495359, МПК С 21 С 5128, 1974). Недостатком указанного способа является увеличенное содержание серы и оксида кремния.

Наиболее близким по технической сути и достигаемому эффекту является способ выплавки стали с использованием в качестве углеродсодержащего материала антрацита, который вводят в конвертер в виде скрапоугольных пакетов или насыпью под лом через тракт сыпучих материалов (Баптизманский В.И., Бойченко Б.М., Черевко В.П. и др. Повышение доли металлолома в шихте кислородных конверторов при вводе твердого топлива в ванну, "Сталь", №4, 1976 г., с.306-309).

Недостатком использования антрацита в конвертерной плавке является ухудшение шлакового режима плавки, особенно в первые минуты продувки, и сравнительно небольшой тепловой эффект.

Технической задачей изобретения является улучшение шлакового режима плавки, снижение расхода науглероживающих материалов, повышение качества стали и снижение ее себестоимости.

Поставленная техническая задача решается за счет того, что в соответствии со способом выплавки стали в конвертере, включающим загрузку металлического лома, заливку жидкого чугуна, ввод в ванну углеродсодержащих и шлакообразующих материалов, в качестве углеродсодержащего материала используют механическую смесь вторичных продуктов производства графитированных изделий, состоящую из термоизоляционного и углеродистого материала, при этом механическая смесь вторичных продуктов производства графитированных изделий и шлакообразующие материалы используют в брикетированном виде при следующем соотношении компонентов, мас.%

материал теплоизоляционный45-70материал углеродистый20-45шлакообразующие материалы - связующееостальное

При использовании в конвертерной плавке вторичных продуктов производства графитированных изделий углерод, так как и углерод антрацита (по прототипу), снижает содержание оксидов железа в шлаке. Из-за незначительного содержания кремнезема увеличения вязкости шлака не происходит.

Относительно небольшое содержание серы в брикете (max 0,5%) позволяет улучшить качество стали и снизить расход материально-энергетических ресурсов на десульфурацию.

Так как и при использовании антрацита в виде топлива тепло выделяется за счет окисления свободного углерода.

2С+О2=2СОгаз

ΔН=-204200 КДж/моль

За счет содержания карбида кремния в составе брикета, который не окисляется, а растворяется в металле по реакции

SiC+Fe=[Si]Fe+[C]Fe

Снижаются расходы науглераживателей и выделяется дополнительная энергия окисления кремния:

Si+O=SiO2

ΔН=-909500 кДж/моль

При этом тепловой эффект от использования смеси вторичных материалов производства графитированных изделий в 1,1-1,25 раза превышает тепловой эффект антрацита.

Материалы углеродистые по ТУ 1914-01827208846-99 и ТУ 1914-00194042-26-01 содержат оптимальное соотношение углерода свободного и углерода, связанного в соединениях кремния, за счет их комплексного влияния обеспечивается синергетический принцип их действия. Дополнительное введение углерода высокотемпературной кальцинации в комбинации с карбидкремнийсодержащим материалом обеспечивает необходимое содержание углерода в стальной ванне.

Физико-химические показатели материалов углеродистых по ТУ 1914-01827208846-99 (МУ) и ТУ 1914-00194042-026-01 (МТ) приведены в табл.1.

Пределы содержания компонентов в составе смеси объясняются следующим.

Материал теплоизоляционный (МТ) (ТУ 1914-00194042-026-01) при его содержании в составе брикета менее 45% не обеспечивает достаточного содержания углерода в расплаве, а при содержании материала теплоизоляционного более 70% появляется избыток углерода в расплаве, что приводит к увеличению длительности процесса плавки и дополнительному расходу кислорода.

Таблица 1Физико-химические показатели материалов углеродистых МУ и МТ.Наименование показателяМатериалМУМТСодержание углерода, %, не менее6080Содержание карбида кремния, %15-251-5Содержание золы, %, не более2020Содержание серы, %, не более1,00,5Содержание влаги, %, не более5,01,0

Материал углеродистый (МУ) (ТУ 1914-01827208846-99) при содержании в составе брикета менее 20% не обеспечивает достаточное выделение тепла, что ухудшает технологические параметры плавки. При содержании смеси углеродсодержащей в составе брикета более 45% увеличивается концентрация оксидов кремния в шлаке, что приводит к снижению его основности.

Шлакообразующие материалы - связующее - представляют собой оксидную систему CaO-SiO2-Al2O3, которая характеризуется гидратным твердением, что позволяет изготовить брикеты достаточно высокой прочности. Наличие в составе брикетов свободного кремнезема приводит к взаимодействию его с СаО шлакообразующего материала - связующего и снижает температуру ее плавления. Постепенное оплавление шлакообразующего - связующего - предотвращает преждевременное окисление углерода и дозировано вводит его в расплав.

Таким образом, использование шлакообразующих веществ в качестве связующего в количестве - остальное (10 мас.%) обеспечивает достаточную прочность брикетов, способствует раннему шлакообразованию, снижает вязкость шлака и предотвращает раннее окисление углерода.

Пример конкретного выполнения.

После выпуска металла предыдущей плавки в конвертер загружали металлический лом в количестве 64 т и заливали жидкий чугун в количестве 202 т с температурой 1308°С, затем на чугун по тракту сыпучих материалов давали брикетированный теплоноситель, содержащий 50% материала теплоизоляционного, 40% материала углеродистого и 10% шлакообразующего материала - связующего. Интенсивность продувки составляла 7000-1000 м3/мин, длительность продувки 14,8 мин. В конце продувки получают металл с содержанием углерода 0,04% и серы 0,035%. Температура металла 1659°С. Выход жидкого металла - 94,1%. Указанная последовательность действий сохраняется при изменении состава теплоносителя в соответствии с заявляемыми пределами.

Полученные данные представлены в таблице 2 в сравнении с известным способом (прототип) выплавки стали с использованием антрацитов.

Таблица 2Влияние состава теплоносителя на технологические показатели процессаПоказательИзвестный (прототип)Вариант ведения плавкиНасыпной теплоносительБрикетированный теплоноситель*Состав теплоносителя,
мас.%
Заявляемого составаЗапредельного составаЗаявляемого составаЗапредельного состава
Антрацит100----Материал теплоизоляционный-60754550707340Материал углеродистый-30154540201750Расход кислорода, м352,552,054,052,152,051,653,851,9Температура металла, °С16001624161516531659166116421623Основность шлака3,033,33,213,133,63,233,52,81Содержание серы на повалке0,0450,0350,0380,030,0350,0320,040,029Выход жидкого металла,%89,892,295,093,494,193,894,590,6Длительность продувки, мин17,016,617,015,114,815,516,716,0*) При содержании связующего менее 10% брикеты были недостаточной прочности и истирались при прохождении бункеров

Анализ представленных данных подтверждает высокую эффективность предложенного способа. Использование в качестве теплоносителя вторичных продуктов производства графитированных изделий в заявляемых количествах по сравнению с известным способом позволяет сократить длительность продувки до 14,8 мин, что приводит к снижению расходов кислорода на додувке в среднем на 1-2%, при приблизительно равном удельном расходе кислорода повысить температуру металла в среднем на 24-61°С, снизить содержание серы до 0,03-0,035%, снизить угар железа и повысить выход жидкого металла до 94,1%.

Оптимальность процентных соотношений компонентов брикета и режимы их введения в плавильный агрегат подтверждены опытными плавками в конвертере. Анализ проведенных плавок по заявляемому способу показал снижение содержания серы в готовом металле, повышение температуры металла, снижение расходов кислорода на додувке.

Похожие патенты RU2275430C2

название год авторы номер документа
БРИКЕТ, ИСПОЛЬЗУЕМЫЙ ПРИ ПРОИЗВОДСТВЕ ЖЕЛЕЗОУГЛЕРОДИСТОГО СПЛАВА (ВАРИАНТЫ) 2004
  • Подольчук Анатолий Дмитриевич
  • Гасик Михаил Иванович
  • Сербин Владимир Викторович
  • Овчарук Анатолий Николаевич
  • Семенов Игорь Александрович
  • Деревянко Игорь Владимирович
  • Щербань Игорь Михайлович
RU2282669C1
СПОСОБ ВНЕПЕЧНОГО ЛЕГИРОВАНИЯ ЖЕЛЕЗОУГЛЕРОДИСТЫХ СПЛАВОВ В КОВШЕ 2004
  • Подольчук А.Д.
  • Гасик Михаил Иванович
  • Сербин Владимир Викторович
  • Овчарук Анатолий Николаевич
  • Семенов Игорь Александрович
  • Деревянко Игорь Владимирович
  • Щербань Игорь Михайлович
RU2247158C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 1991
  • Назюта Людмила Юрьевна[Ua]
  • Борисов Юрий Николаевич[Ua]
  • Лыков Владимир Андреевич[Ua]
  • Зражевский Александр Данилович[Ua]
  • Учитель Лев Михайлович[Ua]
  • Сасин Аркадий Гергиевич[Ua]
  • Бродский Сергей Сергеевич[Ua]
  • Харахулах Василий Сергеевич[Ua]
RU2048533C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 2014
  • Харитонов Олег Юрьевич
RU2594996C2
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2005
  • Демидов Константин Николаевич
  • Борисова Татьяна Викторовна
  • Смирнов Леонид Андреевич
  • Терентьев Александр Евгеньевич
  • Кузнецов Сергей Исаакович
  • Терентьев Евгений Александрович
  • Возчиков Андрей Петрович
RU2288958C1
ШИХТА ДЛЯ ВЫПЛАВКИ СТАЛИ 2003
  • Подольчук А.Д.
  • Гасик Михаил Иванович
  • Сербин Владимир Викторович
  • Овчарук Анатолий Николаевич
  • Семенов Игорь Александрович
  • Деревянко Игорь Владимирович
  • Щербань Игорь Михайлович
RU2247784C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2005
  • Мокринский Андрей Викторович
  • Лаврик Александр Никитович
  • Протопопов Евгений Валентинович
  • Соколов Валерий Васильевич
  • Щеглов Михаил Александрович
  • Казьмин Алексей Иванович
  • Буймов Владимир Афанасьевич
  • Ермолаев Анатолий Иванович
  • Волынкина Екатерина Петровна
  • Машинский Валентин Михайлович
  • Липень Владимир Вячеславович
  • Ганзер Лидия Альбертовна
  • Щеглов Сергей Михайлович
RU2287018C2
Способ выплавки стали с предварительным нагревом лома в конвертере 1982
  • Пак Юрий Алексеевич
  • Югов Петр Иванович
  • Шумов Михаил Михайлович
  • Зинченко Сергей Дмитриевич
  • Липухин Юрий Викторович
  • Махницкий Виктор Александрович
  • Жаворонков Юрий Иванович
SU1059005A1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2002
  • Наконечный Анатолий Яковлевич
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Аникеев С.Н.
  • Платов С.И.
  • Капцан А.В.
RU2228366C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ В КОНВЕРТЕРЕ 2002
  • Соколов В.В.
  • Лаврик А.Н.
  • Амелин А.В.
  • Комшуков В.П.
  • Щеглов М.А.
  • Буймов В.А.
  • Ермолаев А.И.
  • Лебедев В.И.
  • Селезнев Ю.А.
  • Матвеев Н.Г.
  • Казьмин А.И.
  • Липень В.В.
  • Масленников Е.Г.
  • Волынкина Е.П.
RU2215045C1

Реферат патента 2006 года СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ

Изобретение относится к черной металлургии, а именно к способам выплавки стали в кислородных конвертерах со сниженной долей чугуна или при использовании химически холодных чугунов. Способ выплавки стали в конвертере включает загрузку металлического лома, заливку жидкого чугуна, ввод в ванну углеродсодержащих материалов и шлакообразующих. В качестве углеродсодержащего материала используют механическую смесь вторичных продуктов производства графитированных изделий, состоящую из теплоизоляционного материала и углеродсодержащего материала. Механическую смесь вторичных продуктов производства графитированных изделий подают в брикетированном виде при следующем соотношении компонентов, мас.%: материал теплоизоляционный 45-70, материал углеродистый 20-45, шлакообразующие материалы, являющиеся связующим, - остальное. Обеспечивается улучшение шлакового режима плавки, снижение расхода науглераживающих материалов, повышение качества стали и снижение ее себестоимости. 2 табл.

Формула изобретения RU 2 275 430 C2

1. Способ выплавки стали в конвертере, включающий загрузку металлического лома, заливку жидкого чугуна, ввод в ванну углеродсодержащих и шлакообразующих материалов, отличающийся тем, что в качестве углеродсодержащего материала используют механическую смесь вторичных продуктов производства графитированных изделий, состоящую из теплоизоляционного материала и углеродистого материала.2. Способ по п.1, отличающийся тем, что механическую смесь вторичных продуктов производства графитированных изделий и шлакообразующие материалы используют в брикетированном виде при следующем соотношении компонентов, мас.%:

Теплоизоляционный материал45-70Углеродистый материал20-45Шлакообразующие материалы - связующееОстальное

Документы, цитированные в отчете о поиске Патент 2006 года RU2275430C2

БАПТИЗМАНСКИЙ В.И
и др
Повышение доли металлолома в шихте кислородных конвертеров при вводе твердого топлива в ванну
"Сталь", 1976, №4, с.306-307
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 1991
  • Назюта Людмила Юрьевна[Ua]
  • Борисов Юрий Николаевич[Ua]
  • Лыков Владимир Андреевич[Ua]
  • Зражевский Александр Данилович[Ua]
  • Учитель Лев Михайлович[Ua]
  • Сасин Аркадий Гергиевич[Ua]
  • Бродский Сергей Сергеевич[Ua]
  • Харахулах Василий Сергеевич[Ua]
RU2048533C1
DE 10149465 A1, 24.04.2003
GB 843349 A, 04.08.1960.

RU 2 275 430 C2

Авторы

Подольчук Анатолий Дмитриевич

Гасик Михаил Иванович

Сербин Владимир Викторович

Овчарук Анатолий Николаевич

Семенов Игорь Александрович

Деревянко Игорь Владимирович

Щербань Игорь Михайлович

Даты

2006-04-27Публикация

2004-06-01Подача