СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ Российский патент 2006 года по МПК C22F1/18 B21J5/00 

Описание патента на изобретение RU2285740C1

Изобретение относится к термомеханической обработке с изменением механических свойств материала и может быть использовано в машиностроении, авиадвигателестроении и медицине при изготовлении полуфабрикатов из двухфазных титановых сплавов.

Известны способы обработки двухфазных титановых сплавов с целью повышения их механических свойств.

Например, способ деформирования заготовок в пересекающихся горизонтальном и вертикальном каналах (см. В.М.Сегал, В.И.Копылов, В.И.Резников "Процессы пластического структурообразования металлов", Минск: Навука и тэхника, 1994, с.26) позволяет упрочнять металл за счет интенсивной сдвиговой деформации.

Известен способ обработки заготовок, включающий интенсивную пластическую деформацию заготовки в пересекающихся горизонтальном и вертикальном каналах с подпором в последнем, который осуществлялся на начальной и окончательной стадиях процесса деформирования (патент РФ N 2139164, МПК В 21 J 5/00, опубл. 10.10.1999 г.).

Известен способ деформирования заготовок в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С (Ко У.Г., Джанг B.C., Шин Д.Х., Ли С.С. Влияние температуры и исходной микроструктуры на равноканальное угловое прессование сплава Ti-6Al-4V, Скрипта материалиа, №48, 2003, с.197-202).

Известные способы не позволяют получать требуемые однородные прочностные характеристики, включая показатели усталости.

Наиболее близким к предложенному является способ деформирования заготовок в пересекающихся вертикальном и горизонтальном каналах при 600°С (Яписи Г.Г., Караман И., Луо З.П., Рек Г. Микроструктура и механические свойства порошкового сплава Ti-6Al-4V, интенсивно деформированного с использованием равноканального углового прессования, Скрипта материалиа, №49, 2003, с.1021-1027).

Данный способ позволяет повысить уровень прочностных характеристик обрабатываемого материала, но недостаточно для использования в ответственных конструкциях. Кроме того, известный способ не обеспечивает однородность структуры и механических свойств по сечению заготовки.

Изобретение направлено на повышение уровня и однородности прочностных и усталостных характеристик двухфазных титановых сплавов при сохранении пластичности.

Поставленная задача достигается способом получения ультрамелкозернистых заготовок, включающим интенсивную пластическую деформацию заготовки в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С с накопленной логарифмической степенью деформации е≥2. В отличие от прототипа перед интенсивной пластической деформацией проводят термическую обработку, которая включает закалку с температуры полиморфного превращения минус 10°С в воду и высокотемпературное старение при 675-700°С в течение 4-х часов, охлаждение на воздухе, а после интенсивной пластической деформации осуществляют экструдирование в несколько циклов при температуре 300°С с коэффициентом вытяжки не менее 1,2.

Предварительная термическая обработка двухфазных титановых сплавов позволяет сформировать структуру, благоприятную для повышения однородности получаемых прочностных характеристик.

Экструдирование, используемое после интенсивной пластической деформации в пересекающихся вертикальном и горизонтальном каналах, позволяет создать схему деформации, близкую к условиям всестороннего сжатия, что и обеспечивает условия повышенной деформируемости таких труднодеформируемых материалов, как двухфазные титановые сплавы. Например, такие процессы, как волочение или прокатка, при тех же температурно-временных условиях и степенях деформации не могут обеспечить высокой деформируемости материалов в силу реализации менее благоприятных для ее повышения схем деформации.

Сочетание интенсивной пластической деформации в пересекающихся каналах и экструдирования в указанных режимах обеспечивает дополнительное измельчение структуры заготовок, а предварительная термическая обработка позволяет повысить однородность получаемой структуры, что приводит к повышению уровня и однородности прочностных и усталостных характеристик при сохранении пластичности.

Способ осуществляют следующим образом.

Заготовку из двухфазного титанового сплава в виде прутка подвергают закалке с температуры полиморфного превращения минус 10°С в воду и высокотемпературному старению при 675-700°С в течение 4-х часов с охлаждением на воздухе. Данный температурно-временной режим термической обработки обеспечивает промежуточную прочность по сравнению со свойствами отожженного материала и повышенную пластичность по сравнению с высокопрочным состоянием (Колачев Б.А., Полькин И.С., Талалаев В.Д. Титановые сплавы разных стран: Справочник. - М.: ВИЛС, 2000. 316 с.). Это позволяет осуществить последующую интенсивную пластическую деформацию двухфазных титановых сплавов. Кроме того, в результате указанной термической обработки формируется смешанная микроструктура, которая содержит крупную глобулярную α-фазу (не более 20%) и тонкопластинчатую β-превращенную структуру. Данная морфология обеспечивает однородность получаемой ультрамелкозернистой структуры по сечению заготовки. После термической обработки проводится интенсивная пластическая деформация в пересекающихся каналах. Деформацию проводят при температуре 600°С в несколько последовательных проходов, между которыми пруток вращают вокруг продольной оси на 90°. Количество проходов определяется достижением накопленной логарифмической степени деформации е≥2.

После деформации в пересекающихся каналах заготовка подвергается правке, обработке на токарном станке для снятия дефектного слоя.

На следующем этапе заготовку подвергают экструдированию в несколько циклов с постепенным уменьшением диаметра и увеличением длины заготовки с набором коэффициента вытяжки 1,2. Температура экструдирования 300°С была определена опытном путем и является температурой, при которой в заготовках формируется ультрамелкозернистая структура, обеспечивающая комплекс свойств: высокие прочностные и усталостные характеристики при сохранении пластичности. После окончания данного этапа проводят контроль механических свойств на растяжение при комнатной температуре и контроль микроструктуры.

Пример конкретного выполнения.

Брали пруток из сплава Ti-6Al-4V диаметром 40 мм и длиной 120 мм. Температура полиморфного превращения сплава Ti-6Al-4V составляла 960°С. Пруток закаливали в воду с температуры 950°С и подвергали старению при температуре 675°С в течение 4-х часов с охлаждением на воздухе. После этого пруток подвергали интенсивной пластической деформации по описанному выше способу. Угол пересечения каналов Ф=120°. Температура деформации 600°С. Число последовательных проходов n=2. После правки и обработки на токарном станке диаметр заготовки составлял 36 мм.

На следующем этапе пруток подвергали экструдированию при температуре 300°С. Количество циклов экструдирования составило 6, в результате чего диаметр заготовки уменьшился с 36 до 20 мм, а длина заготовки увеличилась со 120 до 300 мм. Далее выполнялся контроль однородности микроструктуры по сечению заготовки. Контроль механических свойств на растяжение при комнатной температуре показал значения, приведенные в таблице 1. Для сравнения в таблице приведены механические свойства сплава до термомеханической обработки по предлагаемому способу, а также свойства после обработки по известному способу-прототипу.

Таблица 1.
Механические свойства сплава Ti-6Al-4V в различных состояниях
Механические
свойства сплава
Состояние сплава
До обработки по предлагаемому способуПосле обработки по способу-прототипуПосле обработки по предлагаемому способуПредел прочности, МПа94012841370Предел текучести, МПа84010421270Относительное удлинение, %16711Относительное сужение, %453537Предел выносливости, МПа550650695

Таким образом, предложенный способ термомеханической обработки двухфазных титановых сплавов позволяет существенно повысить уровень и однородность прочностных и усталостных характеристик обрабатываемого материала при сохранении пластичности.

Похожие патенты RU2285740C1

название год авторы номер документа
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ 2005
  • Баушев Николай Георгиевич
  • Рааб Георгий Иосифович
  • Саитова Лилия Рашитовна
  • Семенова Ирина Петровна
  • Валиев Руслан Зуфарович
RU2285738C1
УЛЬТРАМЕЛКОЗЕРНИСТЫЙ ДВУХФАЗНЫЙ АЛЬФА-БЕТА ТИТАНОВЫЙ СПЛАВ С ПОВЫШЕННЫМ УРОВНЕМ МЕХАНИЧЕСКИХ СВОЙСТВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Семенова Ирина Петровна
  • Рааб Георгий Иосифович
  • Полякова Вероника Васильевна
  • Валиев Руслан Зуфарович
RU2490356C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ЗАГОТОВОК ИЗ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ 2011
  • Шундалов Владимир Алексеевич
  • Шарафутдинов Альфред Васимович
  • Половников Валерий Моисеевич
  • Латыш Владимир Валентинович
  • Кандаров Ирек Вилевич
  • Иванов Владимир Юрьевич
  • Павлинич Сергей Петрович
RU2469122C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННЫХ ПРУТКОВ КРУГЛОГО СЕЧЕНИЯ ИЗ ТИТАНОВОГО СПЛАВА ВТ22 2015
  • Винокуров Владимир Алексеевич
  • Мишин Иван Петрович
  • Найденкин Евгений Владимирович
  • Рожинцева Надежда Викторовна
  • Лыкова Ольга Николаевна
  • Иванов Константин Вениаминович
RU2604075C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТИТАНОВЫХ ЗАГОТОВОК 2005
  • Латыш Владимир Валентинович
  • Салимгареева Гульназ Халифовна
  • Семенова Ирина Петровна
  • Кандаров Ирек Вилевич
  • Половников Валерий Моисеевич
  • Валиев Руслан Зуфарович
RU2285737C1
Способ получения прутков круглого сечения из титанового сплава (варианты) 2021
  • Мишин Иван Петрович
  • Найденкин Евгений Владимирович
  • Винокуров Владимир Алексеевич
  • Рожинцева Надежда Викторовна
  • Лыкова Ольга Николаевна
RU2756077C1
БЕТА-ТИТАНОВЫЙ СПЛАВ И СПОСОБ ЕГО ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ 2011
  • Семенова Ирина Петровна
  • Рааб Георгий Иосифович
  • Медведев Александр Евгеньевич
  • Полякова Вероника Васильевна
  • Валиев Руслан Зуфарович
  • Йошитеру Ясуда
  • Тошикацу Нанбу
  • Йошио Кавашита
RU2478130C1
Способ штамповки заготовок с ультрамелкозернистой структурой из двухфазных титановых сплавов 2019
  • Семенова Ирина Петровна
  • Рааб Георгий Иосифович
  • Рааб Арсений Георгиевич
  • Дьяконов Григорий Сергеевич
  • Артюхин Юрий Васильевич
  • Измайлова Наиля Федоровна
RU2707006C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ЗАГОТОВОК ИЗ ТИТАНОВЫХ СПЛАВОВ 2007
  • Латыш Владимир Валентинович
  • Половников Валерий Моисеевич
  • Кандаров Виль Винерович
  • Кандаров Ирек Вильевич
  • Александров Игорь Васильевич
  • Краллич Дьёрдь
RU2364660C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ТИТАНОВЫХ ЗАГОТОВОК 2014
  • Тухватуллин Султан Гиниятович
  • Ицкович Людмила Николаевна
RU2583551C2

Реферат патента 2006 года СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ

Изобретение относится к области металлургии и может быть использовано в машиностроении, авиадвигателестроении и медицине при изготовлении полуфабрикатов из двухфазных титановых сплавов путем термомеханической обработки, сопровождающейся изменением механических свойств материала. Предложен способ термомеханической обработки двухфазных титановых сплавов. Способ включает интенсивную пластическую деформацию заготовки в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С с накопленной логарифмической степенью деформации не менее двух. Перед интенсивной пластической деформацией проводят термическую обработку, которая включает закалку с температуры полиморфного превращения минус 10°С в воду и высокотемпературное старение при температуре 675-700°С в течение 4-х часов с охлаждением на воздухе, а после интенсивной пластической деформации осуществляют экструдирование заготовки в несколько проходов при температуре 300°С с коэффициентом вытяжки не менее 1,2. Технический результат - улучшение прочностных характеристик двухфазных титановых сплавов (предела прочности, предела текучести, предела выносливости), а также их однородности по сечению заготовки при сохранении удовлетворительной пластичности. 1 табл.

Формула изобретения RU 2 285 740 C1

Способ термомеханической обработки двухфазных титановых сплавов, включающий интенсивную пластическую деформацию заготовки в пересекающихся вертикальном и горизонтальном каналах при температуре 600°С с накопленной логарифмической степенью деформации не менее двух, отличающийся тем, что перед интенсивной пластической деформацией проводят термическую обработку, которая включает закалку с температуры полиморфного превращения минус 10°С в воду и высокотемпературное старение при температуре 675-700°С в течение 4 ч с охлаждением на воздухе, а после интенсивной пластической деформации осуществляют экструдирование заготовки в несколько проходов при температуре 300°С с коэффициентом вытяжки не менее 1,2.

Документы, цитированные в отчете о поиске Патент 2006 года RU2285740C1

YAPISI G.G
et al., Microstructure and mechanical properties of several deformed powder processed Ti-6Al-4V using equal channel angular extrusion, Scripta Materialia, Vol.49, Issue 10, November 2003, реферат
СПОСОБ ДЕФОРМИРОВАНИЯ ЗАГОТОВОК В ПЕРЕСЕКАЮЩИХСЯ КАНАЛАХ 1998
  • Слобода В.Н.
  • Валиев Р.З.
  • Рааб Г.И.
  • Латыш В.В.
RU2139164C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ТИТАНОВЫХ ЗАГОТОВОК 2000
  • Валиев Р.З.
  • Столяров В.В.
  • Латыш В.В.
  • Рааб Г.И.
RU2175685C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ТИТАНОВЫХ ЗАГОТОВОК 2003
  • Валиев Р.З.
  • Салимгареев Х.Ш.
  • Столяров В.В.
  • Бейгельзимер Яков Ефимович
  • Орлов Дмитрий Валентинович
  • Сынков Сергей Григорьевич
  • Решетов Алексей Валерьевич
RU2237109C1
US 3686041 А, 22.08.1972
JP 2003268515 А, 25.09.2003.

RU 2 285 740 C1

Авторы

Саитова Лилия Рашитовна

Семенова Ирина Петровна

Рааб Георгий Иосифович

Баушев Николай Георгиевич

Валиев Руслан Зуфарович

Даты

2006-10-20Публикация

2005-04-29Подача