Изобретение относится к диагностике колебаний, возникающих в турбомашинах, и может найти широкое применение при создании и прочностной доводке осевых турбин и компрессоров, применяемых как в авиации, так и в энергомашиностроении.
Известен способ диагностики колебаний рабочего колеса турбомашины, включающий регистрацию сигнала датчиков пульсаций потока, преобразование сигнала в частотный спектр, регистрацию частоты следования лопаток, наблюдение двух симметрично равноотстоящих от частоты следования лопаток составляющих спектра, характеризующих колебания лопаток с бегущими по колесу волнами деформации, в сравнении между собой в процессе развития колебаний величины указанных составляющих спектра и суждение по результатам сравнения о направлении движения бегущих по колесу волн деформации (Патент РФ №2111469, МКИ: G 01 M 15/00, F 01 D 25/04, опубл. 20.05.98 г.).
Недостатком указанного способа является возможность определения только автоколебаний лопаток и колебаний от вращающегося срыва.
Задача изобретения - обеспечение возможности обнаружения источника высокочастотных пульсаций, генерирующих вибронапряжения элементов конструкции рабочего колеса путем одновременной регистрации сигнала датчиков пульсаций и вибронапряжений на элементах конструкции рабочего колеса, что значительно расширяет функциональные возможности известного способа.
Указанная задача достигается тем, что в способе диагностики колебаний рабочего колеса турбомашины, включающем регистрацию сигнала датчиков пульсаций потока и преобразования сигнала в частотный спектр, на каждом режиме работы турбомашины одновременно с регистрацией сигнала датчиков пульсаций регистрируют вибронапряжения на элементах конструкции рабочего колеса, преобразуют эти сигналы в частотный спектр, сравнивают этот частотный спектр с частотным спектром датчиков пульсаций и по совпадению частот спектров пульсаций и вибронапряжений судят об источнике высокочастотных пульсаций, генерирующих вибронапряжения элементов конструкции рабочего колеса.
Новым в способе является то, что на каждом режиме работы турбомашины одновременно с регистрацией сигнала датчиков пульсаций регистрируют вибронапряжения на элементах конструкции рабочего колеса, преобразуют эти сигналы в частотный спектр, сравнивают этот частотный спектр с частотным спектром датчиков пульсаций и по совпадению частот спектров пульсаций и вибронапряжений судят об источнике высокочастотных пульсаций, генерирующих вибронапряжения элементов конструкции рабочего колеса.
Экспериментально при доводке компрессоров низкого давления двухконтурных турбореактивных двигателей с широкохордными высоконагруженными лопатками было зафиксировано непосредственное возбуждение на собственных частотах рабочих лопаток компрессора и его корпуса пульсациями давления, генерируемыми при взаимодействии лопаток ротора и статора на различных режимах работы двигателя. Эти резонансы приводили к поломкам рабочих лопаток и корпуса компрессора.
Выполнив на каждом режиме работы турбомашины одновременно с регистрацией сигнала датчиков пульсаций регистрацию вибронапряжений на элементах конструкции рабочего колеса, преобразовав эти сигналы в частотный спектр и сравнив этот частотный спектр с частотным спектром датчиков пульсаций, мы по совпадению частот спектров пульсаций и вибронапряжений можем определить источник высокочастотных пульсаций, генерирующих вибронапряжения элементов конструкции рабочего колеса, что значительно облегчает доводку элементов конструкции двигателя.
На фиг.1 показано устройство для реализации способа диагностики колебаний рабочего колеса турбомашины.
На фиг.2 представлены статистические данные по максимальным амплитудам колебаний в спектре:
а) пульсации потока в компрессоре;
б) вибронапряжение корпуса компрессора;
в) вибронапряжения на рабочей лопатке второй ступени компрессора.
Устройство для реализации способа диагностики колебаний рабочего колеса турбомашины содержит корпус двухступенчатого компрессора 1 с лопатками направляющих аппаратов первой и второй ступеней 2 и 3, ротор 4 с рабочими колесами 5 и 6 с рабочими лопатками первой 7 и второй 8 ступеней. За рабочими колесами 5 и 6 в проточной части компрессора установлены датчики пульсаций давления 9 и 10. На корпусе 1 и на рабочей лопатке 8 установлены датчики вибронапряжений 11 и 12, в качестве которых могут быть использованы, например, высокотемпературные тензодатчики, чье применение для измерения вибрационных напряжений известно из сборника статей "Высокотемпературные тензодатчики". М.: Гос. научно-техническое изд-во машиностроительной литературы, 1963, стр.74-77. Выходы датчиков 9, 10, 11 и 12 через многоканальный усилитель 13 подключены к входу анализатора спектров 14, у которого выход соединен со входом магнитного регистратора 15. Анализатор 14 и регистратор 15 могут быть как многоканальными, так и иметь переключатель на входе для выбора одного канала.
Способ осуществляют следующим образом. На каждом режиме работы двигателя, когда компрессор низкого давления вращается с определенными оборотами, сигналы с датчиков пульсаций 9 и 10 и вибронапряжений 11 и 12 через усилитель 13 и анализатор спектра 14 записывают на магнитный регистратор 15. По данным с магнитного регистратора 15 строят график зависимости амплитуды пульсаций и вибронапряжений (по максимальным амплитудам в спектре) от частоты на всех режимах работы двигателя.
График зависимости амплитуды пульсаций и вибронапряжений на компрессоре испытуемого двигателя от частоты на всех режимах работы двигателя представлен на фиг.2. На фиг.2а нанесены амплитуды пульсаций: крестиками по датчику 9 и точками по датчику 10. На фиг.2б нанесены амплитуды вибронапряжений корпуса по датчику 11: крестиками от пульсаций давления за первым рабочим колесом 5, зарегистрированных датчиком пульсаций 9, точками от пульсаций давления за вторым рабочим колесом 6, зарегистрированных датчиком пульсаций 10. На фиг.2в показаны амплитуды вибронапряжений рабочей лопатки второй ступени компрессора 8 по датчику 12: крестиками от пульсаций давления за первым рабочим колесом 5, зарегистрированных датчиком пульсаций 9, точками от пульсаций давления за вторым рабочим колесом 6, зарегистрированных датчиком пульсаций 10. Сравнение графиков на фиг.2а), б) и в) показывает, что вибронапряжения в определенных диапазонах частот на различных режимах работы компрессора двигателя как на корпусе 1, так и на лопатке 8 возникают из-за совпадения собственных частот элементов конструкции (корпус, лопатка) с частотой пульсаций давления, генерируемых при вращении ротора компрессора 4. Наблюдается явление резонанса, который при весьма короткой наработке на некоторых режимах работы двигателя приводит к поломке корпуса компрессора и рабочей лопатки второй ступени.
Демпфирование пульсаций давления в определенных диапазонах частот позволяет исключить явление резонанса элементов конструкции компрессора и обеспечить его надежную работу в течение ресурса двигателя.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДИАГНОСТИКИ КОЛЕБАНИЙ РАБОЧЕГО КОЛЕСА ТУРБОМАШИНЫ | 2008 |
|
RU2395068C2 |
СПОСОБ ДИАГНОСТИКИ РЕЗОНАНСНЫХ КОЛЕБАНИЙ ЛОПАТОК РАБОЧЕГО КОЛЕСА В СОСТАВЕ ОСЕВОЙ ТУРБОМАШИНЫ | 2011 |
|
RU2451279C1 |
СПОСОБ ДИАГНОСТИКИ КОЛЕБАНИЙ РАБОЧЕГО КОЛЕСА ТУРБОМАШИНЫ | 2013 |
|
RU2511773C1 |
СПОСОБ ДИАГНОСТИКИ АВТОКОЛЕБАНИЙ РАБОЧЕГО КОЛЕСА ТУРБОМАШИНЫ (ВАРИАНТЫ) | 2005 |
|
RU2296970C2 |
СПОСОБ ДИАГНОСТИКИ ВИДА КОЛЕБАНИЙ РАБОЧИХ ЛОПАТОК ОСЕВОЙ ТУРБОМАШИНЫ | 2015 |
|
RU2598983C1 |
УСТРОЙСТВО ДЛЯ ДИАГНОСТИКИ АВТОКОЛЕБАНИЙ РАБОЧЕГО КОЛЕСА ТУРБОМАШИНЫ | 2005 |
|
RU2308693C2 |
УСТРОЙСТВО ДЛЯ ДИАГНОСТИКИ АВТОКОЛЕБАНИЙ РАБОЧЕГО КОЛЕСА ТУРБОМАШИНЫ | 2006 |
|
RU2324161C2 |
СПОСОБ ОБНАРУЖЕНИЯ РЕЗОНАНСНЫХ КОЛЕБАНИЙ ЛОПАТОК РОТОРА ТУРБОМАШИНЫ | 2009 |
|
RU2411466C1 |
СПОСОБ ДИАГНОСТИКИ АВТОКОЛЕБАНИЙ РАБОЧЕГО КОЛЕСА ТУРБОМАШИНЫ | 2009 |
|
RU2411484C1 |
СПОСОБ ДОВОДКИ КОЛЕС ТУРБОМАШИН | 2014 |
|
RU2579300C1 |
Способ диагностики колебаний рабочего колеса турбомашины относится к диагностике колебаний, возникающих в турбомашинах, и может найти широкое применение при создании и прочностной доводке осевых турбин и компрессоров, применяемых как в авиации, так и в энергомашиностроении. Способ дает возможность обнаружить источник высокочастотных пульсаций, генерирующих вибронапряжения элементов конструкции рабочего колеса. Выполнив на каждом режиме работы турбомашины одновременно с регистрацией сигнала датчиков пульсаций регистрацию вибронапряжений на элементах конструкции рабочего колеса, преобразовав эти сигналы в частотный спектр и сравнив этот частотный спектр с частотным спектром датчиков пульсаций по совпадению частот спектров пульсаций и вибронапряжений, можно определить источник высокочастотных пульсаций, генерирующих вибронапряжения элементов конструкции рабочего колеса, что значительно облегчает доводку элементов конструкции двигателя. 2 ил.
Способ диагностики колебаний рабочего колеса турбомашины, включающий регистрацию сигнала датчиков пульсаций потока и преобразования сигнала в частотный спектр, отличающийся тем, что на каждом режиме работы турбомашины одновременно с регистрацией сигнала датчиков пульсаций регистрируют вибронапряжения на элементах конструкции рабочего колеса, преобразуют эти сигналы в частотный спектр, сравнивают этот частотный спектр с частотным спектром датчиков пульсаций и по совпадению частот спектров пульсаций и вибронапряжений судят об источнике высокочастотных пульсаций, генерирующих вибронапряжения элементов конструкции рабочего колеса.
СПОСОБ ДИАГНОСТИКИ КОЛЕБАНИЙ РАБОЧЕГО КОЛЕСА ТУРБОМАШИНЫ | 1997 |
|
RU2111469C1 |
СПОСОБ ДИАГНОСТИКИ АВТОКОЛЕБАНИЙ РАБОЧЕГО КОЛЕСА ОСЕВОЙ ТУРБОМАШИНЫ | 1994 |
|
RU2076307C1 |
СПОСОБ ВЫЯВЛЕНИЯ ПОВРЕЖДЕНИЙ РАБОЧИХ ЛОПАТОК ТУРБОМАШИНЫ | 1997 |
|
RU2133951C1 |
СПОСОБ НАСТРОЙКИ НА РЕЗОНАНСНУЮ ЧАСТОТУ КОЛЕБАНИЯ ИСПЫТЫВАЕМЫХ ЛОПАТОК РАБОЧЕГО КОЛЕСА | 1991 |
|
RU2029274C1 |
DE 2921976 A, 06.12.1979 | |||
US 5396793 A, 14.03.1995. |
Авторы
Даты
2006-11-10—Публикация
2005-02-16—Подача