Изобретение относится к нефтедобывающей промышленности, а именно к разработке оптимального компонентного состава и способа получения криопеногелей - вспененных материалов, которые могут быть использованы при строительстве и обустройстве нефтяных и газовых скважин в районах Севера, при рекультивации земель в районах криолитозоны, в технологических процессах добычи и транспорта нефти.
Процесс криотропного гелеобразования протекает при отрицательных температурах в многокомпонентных композициях на основе водных растворов поливинилового спирта. После замораживания водных растворов поливинилового спирта (ПВС) при отрицательной температуре и последующего их оттаивания при положительной температуре образуются упругие полимерные тела, называемые криогелями [В.И.Лозинский. Криогели на основе природных и синтетических полимеров: получение, свойства и области применений. Успехи химии Т.71, №6, 2002 г].
Известен способ получения криопеногеля путем замораживания-оттаивания взбитых механическим способом водных растворов ПВС [В.И.Лозинский, Л.Г.Дамшкалн. Journal of Applied Polymer Science, vol.82, 1609-1619 (2001)].
Недостатком этого способа является нестабильность исходных пен и, как следствие, плохая воспроизводимость свойств получаемых криопеногелей.
Наиболее близкой к предлагаемому решению является композиция для получения криогеля поливинилового спирта и способ получения криогеля (пат. РФ №2190644, опубл. 10.10.2002, БИ №28). Получение пористого полимерного материала проводят путем приготовления исходного полимерного раствора с последующим замораживанием полученного раствора и удалением исходного растворителя из системы. Удаление растворителя из замороженной системы осуществляют промыванием водой для замены исходного растворителя на водную среду. Однако физико-механические и теплофизические свойства полученного продукта недостаточны, что не позволяет использовать его в нефтедобывающей промышленности.
Задача настоящего изобретения - разработать оптимальный состав композиции и способ получения из него криопеногеля с теплофизическими и механическими свойствами, необходимыми для теплоизоляции устья добывающих скважин и предотвращения выпадения в них парафиновых отложений.
Технический результат достигается тем, что состав содержит поливиниловый спирт, хлорид натрия, сажу, глицерин и воду при следующих соотношениях, мас.%:
Хлорид натрия способствует увеличению модуля упругости и повышению температуры плавления криопеногеля. Глицерин, являясь пластификатором, придает эластичность криопеногелям, а также препятствует высыханию и разрушению образцов. Сажа увеличивает модуль упругости и, обладая гидрофобными (флотационными) свойствами, повышает устойчивость исходных пен, способствует структурно-механическому упрочнения стенок газовых ячеек, генерированных механическим способом, т.е. путем пропускания воздуха через пористый фильтр в гелеобразующую композицию.
Способ формирования криопеногеля с теплоизолирующими свойствами заключается в том, что в исходный водный раствор состава для получения криопеногеля вводят газовую фазу и проводят цикл замораживание-размораживание состава.
Стандартный способ получения двухкомпонентных криогелей описан в примере 1. Физические свойства образующихся криогелей зависят от концентрации полимера (примеры 1 и 2) и условий проведения цикла замораживания-размораживания.
Для улучшения теплоизоляционных свойств криогелей (для уменьшения коэффициента теплопроводности) в гомогенный двухкомпонентный раствор ПВС необходимо ввести газовую фазу и из образовавшейся пены после цикла замораживания-размораживания получить криопеногель. Вследствие того, что коэффициент теплопроводности пены существенно ниже коэффициента теплопроводности полимерного раствора, процесс охлаждения и последующего замораживания газонасыщенной жидкости протекает значительно медленнее, чем полимерного раствора, и сопровождается разрушением пены. Поэтому для получения стабильных криопеногелей требуются исходные пены, устойчивые во времени. Газонасыщенные композиции различной кратности формируются путем барботажа воздуха через пористый фильтр в водные растворы поливинилового спирта (от 5 до 10%). После измерения времени оседания полученных пен было установлено, что их устойчивость возрастает с увеличением концентрации полимера в растворе. Но даже у концентрированного раствора (10% ПВС) время разрушения пены составляет менее получаса (1500 с), что явно недостаточно для завершения процесса полного замораживания вспененного образца до его разрушения. Поскольку дальнейшее повышение концентрации полимера в растворе нецелесообразно вследствие резкого возрастания вязкости и технологической сложности получения мелкодисперсной пены, то необходимо вводить добавки, повышающие устойчивость пены.
Пример 1. Водный раствор ПВС, массовое содержание полимера, в котором составляет 5%, заливают в цилиндрическую кювету и ставят на 20 часов в холодильную камеру при температуре (-20°С). После окончания замораживания из цилиндра вынимают ледяной жесткий образец и размораживают при комнатной температуре (+20°С) в течение 4 часов. После размораживания образец переходит из кристаллического в эластичное (каучукоподобное) состояние. Характеристики полученного двухкомпонентного криогеля (модуль упругости G, температура плавления Тпл и коэффициенты теплопроводности λ) приведены в таблице 1.
Примеры 2-3. По методике, описанной в примере 1, готовят и исследуют криогели с содержанием полимера 10 и 16%. Результаты измерений физических характеристик приведены в таблице 1. Увеличение концентрации полимера в криогеле повышает модуль упругости и практически не влияет на коэффициент теплопроводности.
Примеры 4-5. В двухкомпонентную систему, состоящую из ПВС - 5% и воды - 90% вводят глицерин 5 и 50%. После цикла замораживания-размораживания приготовленной композиции образуется криогель. Результаты измерений физических характеристик приведены в таблице 1. Небольшие концентрации глицерина не влияют на модуль упругости криогеля и лишь высокие концентрации глицерина (50%) существенно повышают модуль упругости криогеля.
Примеры 6-8. Варьируя концентрации компонентов, готовят композиции, содержащие ПВС, хлорид натрия, сажу, глицерин и воду. Аналогично примеру 1 проводят цикл замораживания-размораживания и определяют физические характеристики сформированных криогелей (таблица 1). Многокомпонентные криогели по сравнению с двухкомпонентными обладают повышенной упругостью и температурой плавления.
Примеры 9-11. Барботируя воздух через пористый фильтр, вспенивают жидкие многокомпонентные композиции с различным содержанием сажи. Затем для получения криопеногеля из пены, содержащей равные объемы жидкой и газовой фазы (кратность 2), аналогично примеру 1 проводят цикл замораживания-размораживания. Результаты измерений физических характеристик полученных пенокриогелей приведены в таблице 1. Полученные криопеногели имеют заметно меньшие коэффициенты теплопроводности по сравнению со сплошными двухкомпонентными криогелями и практически не уступают последним в упругости (в интервале концентраций от 5 до 10% ПВС).
Пример 12. Введение в многокомпонентную композицию двух объемов газа на один объем жидкой фазы (кратность 3) и последующее замораживание-размораживание сопровождается дальнейшим понижением коэффициента теплопроводности у образующегося криопеногеля.
Таким образом, предложенный состав и способ его получения позволяют получать стабильный материал с улучшенными механическими и теплоизоляционными свойствами.
название | год | авторы | номер документа |
---|---|---|---|
СОСТАВ ПЕНОКРИОГЕЛЯ И СПОСОБ ЕГО ФОРМИРОВАНИЯ | 2006 |
|
RU2321607C1 |
ТОПЛИВНЫЙ БРИКЕТ И СПОСОБ ЕГО ФОРМИРОВАНИЯ | 2011 |
|
RU2467058C1 |
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЗАТОРА ВОЗДУХА | 2014 |
|
RU2574002C1 |
СПОСОБ ЗАЩИТЫ ГРУНТОВ ОТ ЭРОЗИИ И СОЗДАНИЯ ЗЕЛЕНОГО ПОКРЫТИЯ | 2012 |
|
RU2496588C1 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА | 2003 |
|
RU2252945C1 |
ГИДРОИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ | 2015 |
|
RU2605112C2 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ МАСЛОНАПОЛНЕННОГО КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА, СПОСОБ ПОЛУЧЕНИЯ УКАЗАННОГО КРИОГЕЛЯ И МАСЛОНАПОЛНЕННЫЙ КРИОГЕЛЬ | 2006 |
|
RU2326908C1 |
ЛЮМИНЕСЦЕНТНЫЙ БИОКАТАЛИЗАТОР ДЛЯ ОПРЕДЕЛЕНИЯ ТОКСИКАНТОВ | 2008 |
|
RU2394910C2 |
Способ защиты грунта от эрозии и создания зеленого покрытия | 2023 |
|
RU2807596C1 |
СОСТАВ ДЛЯ СОЗДАНИЯ ВОДОНЕПРОНИЦАЕМОСТИ НИЗКОТЕМПЕРАТУРНЫХ ГРУНТОВ И ПОРОД | 2004 |
|
RU2289652C2 |
Изобретение относится к нефтедобывающей промышленности, а именно к разработке оптимального компонентного состава и способа получения криопеногелей - вспененных материалов, которые могут быть использованы при строительстве и обустройстве нефтяных и газовых скважин в районах Севера, при рекультивации земель в районах криолитозоны, в технологических процессах добычи и транспорта нефти. Состав содержит поливиниловый спирт и растворитель - воду, при этом он дополнительно содержит хлорид натрия, сажу и глицерин. Способ формирования криопеногеля заключается во вспенивании воздухом предлагаемого состава и последующем проведении цикла замораживания-размораживания состава. Технический результат - получение криопеногеля с теплофизическими и механическими свойствами, необходимыми для теплоизоляции устья добывающих скважин и предотвращения выпадения в них парафиновых отложений. 2 н.п. ф-лы, 1 табл.
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА И СПОСОБ ПОЛУЧЕНИЯ КРИОГЕЛЯ | 2001 |
|
RU2190644C1 |
ЛОЗИНСКИЙ В.И., ДАМШКАЛН Л.Г | |||
Journal of Applied Polymer Science | |||
Машина для разделения сыпучих материалов и размещения их в приемники | 0 |
|
SU82A1 |
ЛОЗИНСКИЙ В.И | |||
Криогели на основе природных и синтетических полимеров: получение, свойства и области применений | |||
Успехи химии | |||
Контрольный стрелочный замок | 1920 |
|
SU71A1 |
Авторы
Даты
2006-12-10—Публикация
2005-11-07—Подача