СПОСОБ КОМПЛЕКСНОЙ ЗАЩИТЫ ИНФОРМАЦИИ Российский патент 2007 года по МПК H04K1/06 H04L12/00 G06F21/00 H03M13/00 

Описание патента на изобретение RU2292122C1

Изобретение относится к техническим средствам комплексной защиты информации от всех возможных видов воздействий на информацию при ее передаче и хранении.

Известны следующие виды воздействий на информацию в информационно-телекоммуникационных системах, в том числе умышленные деструктивные:

- попытка навязывания ложной информации;

- попытка подавления связи за счет создания интенсивных искусственных помех, с которыми не могут справиться применяемые операции защиты от помех;

- попытка разрушения баз данных в информационной системе;

- попытка считывания из системы конфиденциальной информации.

В рамках комплексной защиты в соответствии со способом обеспечивается решение следующих отдельных задач, к которым относятся:

защита от искажений в каналах (сетях) связи;

криптографическая защита от ознакомления;

- криптографическая защита от навязывания ложной информации;

- контроль и восстановление целостности информации;

- разграничение доступа пользователей к информации;

- защита от умышленных деструктивных воздействий на информацию в информационных системах.

Известны [1, 2] способы передачи информации по каналам связи с использованием помехоустойчивых циклических кодов с обнаружением ошибок в составе протоколов канала передачи данных (КПД), в которых передаваемую информацию кодируют циклическим кодом, принятую в виде блоков циклического кода информацию проверяют на наличие искажений, искаженные блоки повторно передают по сигналу обратной связи.

Эти способы обладают тремя основными недостатками:

- при снижении качества дискретного канала связи передача становится невозможной, так большое число принятых блоков оказывается искаженным и КПД "зацикливается",

- в КПД не обеспечивается комплексная защита информации, для защиты от навязывания ложной информации и криптозащиты используются дополнительные технические решения,

- режим обнаружения ошибок циклическими кодами не обеспечивает эффективную скорость передачи, близкую к пропускной способности канала связи.

Известны [1] способы передачи информации с использованием алгебраических кодов с исправлением ошибок (коды Хэмминга, Боуза-Чоудхури-Хоквингема, Рида-Соломона и др.).

Эти способы имеют следующие недостатки:

- алгебраические коды в режиме исправления ошибок оказываются очень чувствительны к кратности ошибки, что приводит к большой и неконтролируемой вероятности ошибки декодирования в каналах с группирующимися ошибками, что имеет место в реальных каналах связи;

- кодирование и особенно декодирование известных кодов имеет относительно сложную реализацию, особенно в случае программной реализации;

- не обеспечивается комплексность защиты.

Известны [2, 3] способы шифрования информации, основанные на использовании криптографического преобразования информации, и способы комплексной защиты информации с использованием криптографического преобразования и помехоустойчивого кодирования, причем в способе сочетаются несколько отдельных процедур защиты на основе различных способов обработки информации, например помехоустойчивый циклический код с обнаружением ошибок, криптографическое преобразование информации, имитовставка для проверки целостности информации и т.д.

Недостатками таких способов являются:

- отсутствие комплексности в способе обработки информации, что, в свою очередь:

- увеличивает избыточность, вводимую для комплексной защиты информации;

- усложняет обработку и снижает скорость обмена информации;

- не обеспечивает восстановление целостности и исправление естественных ошибок в канале связи;

- не обеспечивает защиту от навязывания ложной информации в режиме прямого кодового исправления ошибок.

Известны способы [3, 4] разграничения доступа пользователей к информации, основанные либо на использовании системы паролей, либо на шифровании информации, хранимой на носителях информации компьютеров. Защита на основе паролей недостаточно стойкая, так как информация в памяти компьютера не преобразуется, а система проверки пароля может быть преодолена опытным программистом. Защита на основе шифрования информации в памяти компьютера предъявляет высокие требования к скорости обработки информации при записи и считывании информации и поэтому применяется относительно редко, их применение ограничено из-за относительно низкой скорости преобразования, сдерживающей процессы обработки информации. Для широкого применения шифрования данных требуется криптоалгоритм с высокой скоростью обработки и большим пространством ключей.

Недостатками всех перечисленных аналогов является отсутствие комплексности защиты информации в рамках единого способа обработки информации.

Комплексность защиты обеспечивается в соответствии с изобретением благодаря следующим особенностям и свойствам математической основы способа:

- гарантированный характер свойств способа передачи и защиты информации;

- сочетание введения кодовой избыточности и криптографического преобразования в рамках единого способа защиты информации;

- наличие набора параметров исходного кода, при котором:

- имеется возможность достоверно и точно определить качество используемого канала;

- подобрать оптимальный код для любого возможного качества канала с вероятностью искажения q-ичного символа от 0,5 до любого малого значения этой вероятности (соответственно от вероятности искажения двоичного символа от 0,1 до любого малого значения, например до 10-7) в любом законе распределения потока ошибок;

- унифицированный характер описания свойств канала, на котором можно построить операции адаптации как при включении канала передачи данных, так и в процессе его работы:

- при включении - использование кода с повторением, например, с параметрами (100, l, q), когда наличие 2 или более неискаженных q-ичных символов из 100 позволяет достоверно и надежно определить исходное качество канала,

- после начала работы за счет определения числа и доли (вероятности) случаев отказа от полного исправления искажений в канале на интервале наблюдения можно сделать достоверный вывод, что состояние канала изменилось и нужно менять применяемый код на более "сильный" (с большей исправляющей способностью) или, напротив, более "слабый" код, который при большей кодовой скорости позволит в изменившемся канале передавать информацию более быстро (с большей эффективной скоростью).

Обеспечение применения в системе передачи или обработки информации приемов теории игр за счет использования "смешанных стратегий", "рандомизированных стратегий", то есть совокупностей сменяемых сигнальных конструкций для обеспечения гарантированного характера характеристик системы, то есть использования ансамблей кодов и шифров;

- возможность простой аппаратной и программной реализации;

- быстрая программная и аппаратная реализация;

- единая совокупность операций обработки информации;

- высокая эффективность из-за:

- однократного введения избыточности для решения всех задач, требующих избыточности (защита от ошибок, защита от навязывания, контроль и восстановление целостности в базах данных, контроль подлинности);

- использование единых для всех задач защиты элементов информации (q-ичных символов), рассматриваемых как символ помехоустойчивого кода, блок шифрования в задаче криптографической защиты от ознакомления;

- использование единых операций криптографического преобразования для решения всех задач криптографической защиты (защита от ознакомления, защита от навязывания ложной информации, контроль подлинности, контроль и восстановление целостности)

При этом ставится задача эффективной реализации каждого из видов защиты по сравнению с известными средствами защиты, но с новым качеством обеспечения гарантированных характеристик информационной системы, таких как гарантированная высокая достоверность при произвольном характере искажений (вероятность ошибки в выдаваемой потребителю информации 10-9, 10-18 и меньше), гарантированное доведение сообщений по любому каналу с ненулевой пропускной способностью за счет использования адаптации к свойствам канала, описываемой вероятностью искажения q-ичного символа, гарантированная стойкость защиты и др.

Способ комплексной защиты информации при хранении и передаче информации может применяться в системах, каналах и сетях связи, в том числе в радио и локальных вычислительных сетях, а также при построении программных, аппаратных и программно-аппаратных средств криптографической защиты информации и разграничения доступа к информации в высокоскоростных сетях, в базах данных и знаний, информационных системах и системах управления.

В соответствии с изобретением в способе комплексной защиты информации предлагается строить следующим образом.

Способ комплексной защиты информации характеризуется тем, что для защиты от всех видов воздействий на информацию, в том числе защиты от искажений в каналах и сетях связи и хранилищах информации, криптографической защиты от ознакомления, защиты от навязывания ложной информации, контроля подлинности и восстановления целостности информации, разграничения доступа пользователей к информации, защиты от умышленных деструктивных воздействий на информацию в информационных системах, обеспечения гарантированных информационных характеристик системы, подлежащая защите информация подвергается единой совокупности операций обработки ансамблем кодов и шифров при однократно вводимой избыточности в следующей последовательности: до передачи в канал связи или перед записью в память анализируют состояние используемого канала связи или среды хранения информации, определяют из М возможных кодов параметры оптимального для данного состояния канала или среды хранения информации (n, k, q)-кода, подлежащую защите информацию разбивают на q-ичные символы длиной l бит (q=2l), для каждого q-ичного символа вырабатывают комбинацию гаммы ξ длиной l бит от независимого от информации источника, для каждой совокупности из k информационных q-ичных символов формируют (n-k) избыточных q-ичных символов по правилам исходного двоичного (n, k)-кода, каждый q-ичный символ подвергают шифрующему стохастическому преобразованию с участием гаммы, после приема из канала связи или после считывания из памяти для каждого q-ичного символа вырабатывают комбинацию гаммы ξ длиной l, синхронно с передающей стороной, выполняют обратное стохастическое дешифрующее преобразование каждого q-ичного символа с участием гаммы, локализуют с помощью проверочных соотношений исходного двоичного кода правильно принятые или считанные из памяти q-ичные символы, проверяют правильность локализации q-ичных символов кодового блока, недостоверно локализованные символы стирают, восстанавливают целостность сообщения путем исправления нелокализованных и стертых q-ичных символов каждого блока, выражая их значения через значения достоверно локализованных или уже исправленных q-ичных символов, при невозможности достоверного восстановления целостности кодового блока его стирают и передают повторно, подсчитывают число стертых блоков, определяют на интервале наблюдения оптимальность применяемого кода с исправлением ошибок при текущем состоянии канала, при выходе критерия оптимальности кода за заданные минимальный или максимальный пределы меняют синхронно на передающей и приемной части канала код на оптимальный по критерию максимума скорости передачи.

При этом отдельные задачи защиты информации в рамках единого способа решаются следующим образом.

При защите от искажений в каналах и сетях связи и хранилищах информации восстанавливают целостность информации с гарантированной в произвольном канале достоверностью прямым кодовым исправлением ошибок в пределах исправляющей способности (n, k, q)-кода, обнаруживают ошибки с кратностью, превышающей исправляющую способность кода, повторно передают кодовые блоки с неисправленными искажениями, проводят адаптацию по заданному критерию оптимальности параметров и исправляющей способности кода при изменении интенсивности искажений в канале связи.

При криптографической защите от ознакомления выполняют независимо от применяемого помехоустойчивого кода преобразование q-ичных символов кода ансамблем шифров, сменяемым на каждом блоке шифрования, при этом прямое шифрующее стохастическое преобразование q-ичного символа обеспечивает независимо от передаваемой информации квазислучайный характер сигнала, обратное стохастическое дешифрующее преобразование q-ичного символа выполняет размножение искажений в q-ичном символе с обеспечением равной вероятности для каждого из q-1 возможных значений символа за исключением переданного.

При защите от навязывания ложной информации, контроле подлинности и восстановлении целостности информации в канале с предумышленными помехами выполняют прямое кодовое исправление искажений q-ичным кодом, представляющим собой ансамбль случайных кодов на основе двоичного кода со сменой кода на каждом кодовом блоке и повторную передачу блоков с неисправленными искажениями.

Для разграничения доступа пользователей к информации при хранении и передаче сообщений конкретного пользователя выполняют криптографическое стохастическое преобразование сообщения с использованием гаммы, вырабатываемой на индивидуальном ключе соответствующего пользователя.

При защите от умышленных деструктивных воздействий на информационные системы в виде преднамеренных помех в каналах связи и ввода в систему ложной деструктивной информации защита от навязывания ложной информации, поступающей из каналов связи, обеспечивается устойчивый обмен информации с помощью адаптации к состоянию канала, в том числе при значительном снижении качества канала.

Достижение гарантированных характеристик информационных систем в произвольных условиях функционирования обеспечивают применением ансамблей кодов и шифров, меняющихся для каждого кодового блока и q-ичного символа соответственно, с обеспечением передачи в канал связи сигналов из всех возможных 2n на двоичной последовательности длины n, как результат смены стратегии в процессе борьбы с источником деструктивных воздействий на информационную систему.

При этом отдельные группы операции способа выполняются следующим образом.

Локализацию правильно принятых q-ичных символов выполняют с помощью N=2n-k-1 проверочных соотношений кода, являющихся строками проверочной матрицы двоичного кода Н и их линейными комбинациями, проверка правильности приема q-ичных символов для j-го соотношения осуществляется путем суммирования по модулю 2 тех из n q-ичных символов, которым соответствует символ 1 в данном j-м проверочном соотношении, и проверкой значения полученной суммы, соотношение считается выполненным, а q-ичные символы признаются правильно принятыми без искажений, если эта сумма равна комбинации из l нулевых двоичных символов, подсчитывают число локализованных символов Nл (Nл⊂[0, n]), число выполненных соотношений Nc (Nс⊂[0,2n-k-1]) и для каждого q-ичного символа с номером i - число выполнившихся соотношений, в которые входил этот символ, - Мi.

Проверку правильности локализации для кодовых блоков проводят путем проверки условий Nc=2r-t*-1, t*≤d-2, где t*=n-Nл, d - кодовое расстояние двоичного (n, k)-кода.

Проверку правильности локализации отдельных q-ичных символов проводят путем проверки условий Мi (t*)≥Пq(t*), где Пq(t*) - пороговые значения числа выполнившихся соотношений для q-ичного символа при заданном значении t*, символы, для которых условие не выполняется, стирают, а величину Nл уменьшают на число стертых символов.

Исправления нелокализованных и стертых символов для восстановления целостности информации выполняют, выражая значение исправляемого символа через значения локализованных или ранее исправленных символов, для чего выбирают проверочное соотношение, в которое входит один исправляемый символ и остальные только локализованные и ранее исправленные символы, значение исправляемого символа получают суммированием по модулю 2 значений локализованных и ранее исправленных символов, входящих в выбранное проверочное соотношение.

Анализ состояния используемого канала связи или среды хранения информации осуществляют с помощью передачи блока стохастического q-ичного кода с повторением (n, l, q), после приема выполняют посимвольное сравнение принятых q-ичных символов и подсчитывают число совпавших q-ичных символов, определяют долю совпавших символов относительно длины кода n, по значению полученной величины доли искаженных q-ичных символов выбирают параметры кода с исправлением ошибки для передачи информации в данном канале.

Анализ оптимальности применяемого кода по критерию максимума скорости передачи выполняют на интервале наблюдения последних Х принятых блоков путем подсчета числа блоков с неисправленными искажениями, определения доли таких блоков на интервале наблюдения и сравнения значения этой доли со значениями верхней и нижней границ интервала оптимальности.

Формирование избыточных символов выполняют для i-го q-ичного символа (n, k, q)-кода (i⊂[l, n-k]) суммированием по модулю 2 тех информационных q-ичных символов, которым соответствует символ 1 в i-й строке проверочной матрицы Н исходного двоичного (n, k)-кода.

Генерацию значений гаммы ξ длиной l выполняют с помощью регистра сдвига с нелинейными функциями в цепях обратной связи на основе таблиц со случайным заполнением.

Криптографическое стохастическое преобразование выполняют с помощью операций на основе таблиц со случайным заполнением.

Начальное заполнение регистра сдвига с обратной связью и таблиц случайными числами для стохастического преобразования и в цепях обратной связи является ключом криптографической защиты.

Способ осуществляется в следующей последовательности.

До начала передачи информации по каналу связи, свойства которого не известны, производится тестирование канала. При этом для любого канала с ненулевой пропускной способностью совокупность операций способа выполняется одинаково. В канал передается тестирующая последовательность в виде стохастического (n, 1), где значение n выбирается тем больше, чем больше интервал адаптации (соотношение между самым худшим и самым лучшим состояниями канала), например n=100. Каждый из n q-ичных кодов подвергается на передаче прямому, а на приеме обратному стохастическому преобразованиям, которые минимизируют вероятность случайного совпадения 2-х (3-х и более) искаженных символов. Отметим, что при n=100 процедура тестирования закончится успешно, если неискаженными из 100 символов окажутся 2 и более q-ичных символов. Причем, если состояние канала будет очень низким, то для передачи полезной информации можно использовать также код с повторением, который может обеспечить доведение сообщения (части сообщения) длиной l бит (один q-ичный символ) при искажении n-2 из n символов кода с повторением. Для очень хорошего канала, например, с вероятностью искажения 10-5 (вероятность искажения q-ичного символа порядка 10-3) оптимальным будет код с параметрами кода Хэмминга с дополнительной проверкой на четность с кодовым расстоянием d=4, исправляющий t=2 искаженных q-ичных символов, например, с параметрами (512, 502) с кодовой скоростью 502/512=0,9804. При этом двоичные параметры кода равны (512l, 502l).

Подлежащая защите информация разбивается на q-ичные символы длиной l бит (q=2l), причем значение длины такого символа выбирается исходя из требуемой достоверности, описываемой вероятностью ошибки декодирования Рош, причем при выбранном q имеет место соотношение Рош≤q-1, например, для обеспечения Рош=10-9 можно использовать значение l=32 бита. Важно, что в соответствии со способом можно обеспечивать любую достоверность, конструктивно устанавливаемую при проектировании, гарантированную в произвольном канале связи. Так, при l=64 обеспечивается Рош≤q-1=10-18 и т.п.

Для каждых k q-ичных символов формируют n-k избыточных q-ичных символов по правилам двоичного (n, k)-кода, перед передачей в канал связи каждый q-ичный символ подвергают стохастическому преобразованию с участием параметра преобразования ξ, длиной l от независимого датчика, на приемной стороне выполняют обратное стохастическое преобразование каждого q-ичного символа с участием синхронно вырабатываемых значений ξ длиной l, выполняют локализацию правильно принятых q-ичных символов, подсчитывают число локализованных символов, проверяют правильность локализации, недостоверно локализованные символы стирают, нелокализованные и стертые символы исправляют, выражая значения исправлякемых символов через значения достоверно локализованных символов.

При этом формирование избыточных символов выполняют поочередно для i-го q-ичного символа (i⊂[l, n-k]) путем суммирования по модулю 2 тех информационных q-ичных символов, которьм соответствует символ 1 в i-й строке проверочной матрицы Н двоичного (n, k)-кода.

На передающей стороне (перед записью в память) для каждого q-ичного символа вырабатывается комбинация гаммы длиной l бит от независимого от информации источника, затем каждый q-ичный символ подвергают шифрующему стохастическому преобразованию с участием гаммы.

На приемной стороне после приема из канала связи или после считывания из памяти для каждого q-ичного символа вырабатывают комбинацию гаммы длиной l, синхронно с передающей стороной, выполнят обратное стохастическое дешифрующее преобразование каждого q-ичного символа с участием гаммы.

Далее выполняется выделение (локализация) правильно принятых символов. Для обеспечения гарантированной в произвольном канале достоверности используется принцип многократного обнаружения ошибки в части из символов кодового блока, когда находят совокупность из неискаженных символов, входящих в одно из проверочных соотношений кода, тогда такое соотношение выполняется, а входящие в него q-ичные символы считаются выявленными или локализованными. Локализацию правильно принятых q-ичных символов выполняют с помощью N=2n-k-1 проверочных соотношений кода, являющихся строками проверочной матрицы двоичного кода Н и их линейными комбинациями, проверка правильности приема q-ичных символов для i-го соотношения осуществляется путем суммирования по модулю 2 тех из n q-ичных символов, которым соответствует символ 1 в данном проверочном соотношении и проверкой значения полученной суммы, соотношение считается выполненным, а q-ичные символы признаются правильно принятыми без искажений, если эта сумма равна комбинации из l нулевых двоичных символов, подсчитывают число локализованных символов Nл (Nл∈[0, n]) и число выполненных соотношений Nc (Nc∈[0,2n-k-1])]) и для каждого q-ичного символа с номером i - число выполнившихся соотношений, в которые входил этот символ, - Мi.

Такая последовательность операций локализации обладает свойством, что если число искаженных q-ичных символов не превышает величины t=d-2, то все правильно принятые символы, число которых n-d+2 или менее будут локализованы, причем они будут присутствовать не менее чем в трех выполнившихся проверочных соотношениях (при t=d-2 - в трех, при t=d-3 - в пяти, при t=d-4 - в семи и т.д.), что является условием возможности проверить правильность (безошибочность) локализации символов. Причем при правильной локализации каждый из символов входит в одинаковое число выполнившихся соотношений. При локализации возможна ошибка с вероятностью не более Рош≤q-1, если после искажения двух и более q-ичных символов возникнет ситуация, когда для двух (или более) q-ичных символов их отличия от переданных значений после обратного стохастического преобразования (обозначаемых как преобразованные вектора ошибки е') будут такими, что сумма по модулю 2 даст последовательность из l нулевых двоичных символов, тогда не смотря на искажения двух (или более) символов проверочное соотношение выполнится. Однако при этом картина результатов локализации существенно изменится. Во-первых, число "локализованных" символов будет больше, чем при соответствующем числе выполнившихся соотношений, во-вторых, число выполнившихся соотношений Mi, куда вошел каждый символ i, будет разным для разных символов. На этих особенностях строится порядок проверки правильности локализации. Отметим, что код позволяет исправить максимальное число t=d-2 при вероятности ошибки Рош≤q-1, если же реально произошло t=d-3 ошибки (на 1 меньше максимально возможной), то при этом выполнится пять соотношений, а реально достигнутая достоверность декодирования блока оценивается вероятностью ошибки Рош≤q-2, что в q раз меньше, и т.д.

Таким образом, проверку правильности локализации символов блока проводят путем проверки условий Nc=2r-t*-1, t*≤d-2, где t*=n-Nл - кодовое расстояние двоичного (n, k)-кода для кодовых блоков. При этом проверку правильности локализации отдельных q-ичных символов проводят путем проверки условий Mi(t*)≥Пq(t*), где Пq(t*) - пороговые значения числа выполнившихся соотношений для q-ичного символа при заданном значении t*, символы, для которых условия не выполняются, стираются, а величина Hл уменьшается на число стертых символов.

Исправление нелокализованных и стертых символов выполняют, выражая значение исправляемого символа через значения локализованных или ранее исправленных символов, для чего выбирают проверочное соотношение, в которое входит один исправляемый символ и остальные только локализованные и ранее исправленные символы, значение исправленного символа получают суммированием по модулю 2 значений локализованных и ранее исправленных символов, входящих в выбранное проверочное соотношение.

Генерацию значений параметра преобразования ξ, длиной l выполняют с помощью регистра с нелинейными функциями в цепях обратной связи на основе таблиц со случайным заполнением. При этом при реализации способа начальное заполнение таблиц случайными числами и регистра сдвига с обратной связью являются ключом криптографической защиты (патент №2246129).

Стохастическое преобразование является криптографической операцией, обеспечивающей:

- на передающей стороне при передаче любой информации, даже одинаковых информационных комбинаций в кодовом блоке, переход к случайным сигналам в канале связи, обеспечивающим в постановке Шеннона достижение абсолютной секретности;

- на приемной стороне - в пределах каждого искаженного q-ичного символа длиной l бит преобразование его в одну из 2l - 1 случайных комбинаций (кроме переданной) с равной вероятностью, что обеспечивает получение гарантированной в произвольном канале достоверности Рош≤q-1. Таким образом может быть получена любая (выбором значения l) необходимая достоверность, в том числе и стремящаяся к нулю.

Защита от навязывания ложной информации в условиях одновременно решаемых задач повышения эффективности передачи информации при любом качестве канала, в том числе при значительном снижении этого качества, снижении качества канала и задачу защиты от деструктивных воздействий, решается за счет операций кодового восстановления целостности (прямого кодового исправления ошибок) при гарантированной достоверности такого успешного восстановления при любом характере помех. То есть, если число искаженных q-ичных символов не превышает исправляющей способности кода, то эти искажения будут достоверно исправлены, если число искаженных символов превышает исправляющую способность кода, то произойдет надежный отказ от исправления, но искаженная информация не будет выдана потребителю информации. Если число таких случаев отказа от исправления ошибок окажется больше выбранного при проектировании заданного верхнего порога, то в соответствием с процедурой адаптации будет осуществлен переход на использование более "сильного" кода, имеющего при этом меньшую кодовую скорость (отношение R=k/n).

Если число таких случаев отказа от исправления ошибок окажется меньше выбранного при проектировании нижнего заданного порога, то в соответствии с процедурой адаптации будет осуществлен переход на использование более "слабого" кода, имеющего при этом большую кодовую скорость (отношение R=k/n). Выбираемые при проектировании верхний и нижний пороги оптимальности имеют значения порядка 0,5 и 0,1 соответственно.

После нарушения функционирования канала передачи данных из-за резкого снижения качества канала и невозможности осуществлять обмен с использованием ранее выбранных параметров кода возможно продолжение обмена с начального тестирования состояния канала с помощью кода с повторением, как описано выше.

Описанный способ обладает следующими преимуществами:

- обеспечение комплексности защиты в рамках единой совокупности операций обработки информации при однократно вводимой избыточности, а именно:

- защита от искажений в каналах (сетях) связи;

- криптографическая защита от ознакомления;

- криптографическая защита от навязывания ложной информации;

- контроль и восстановление целостности информации;

- разграничение доступа пользователей к информации;

- защита от умышленных деструктивных воздействий на информацию в информационных системах;

- увеличение эффективности обработки информации с достижением:

- гарантированной достоверности в режиме исправления ошибок при произвольном характере и интенсивности искажений в канале связи;

- увеличение эффективной скорости передачи информации;

- обеспечение обработки и передачи в режиме реального времени;

- высокая скорость обработки информации, не сдерживающая физическую скорость в канале связи, выраженная в битах в секунду, или при обработке в компьютере, например при шифровании перед записью на носители информации (дешифрования после считывания с носителей);

- обеспечение высокой криптографической стойкости при защите информации за счет достижения следующих свойств:

- после шифрования и перед выдачей в канал связи квазислучайной последовательности сигналов независимо от статистики отдельных букв в исходном тексте;

- использование сложного преобразования, не имеющее никакого другого формального описания, кроме описания заполнения случайных таблиц преобразования;

- возможность рассматривать начальное заполнение случайных таблиц как ключ шифрования;

- обеспечение широкого применения помехоустойчивых кодов с прямым кодовым исправлением ошибок в каналах с произвольным законом распределения и интенсивностью ошибок в канале связи, в том числе при преднамеренных искажениях с целью деструктивного воздействия на каналы и сети связи и информационные системы.

Способ может применяться во всех случаях, где сегодня применяются помехоустойчивые коды с обнаружением или исправлением ошибок, способы криптографии, средства защиты от навязывания ложной информации, разграничение доступа к информации в информационных системах, защиты от деструктивных воздействий, контроля и восстановления целостности информации в массивах данных, причем, как в случаях, когда защита строится как комплексная (в туннелированных протоколах и системах специального назначения), так и в случаях, когда традиционно применялись отдельные из задач комплексной защиты. То есть способ может применяться в:

- телекоммуникационных сетях типа Internet/Inranet;

- в радиосетях и каналах связи;

- в операционных системах и базах данных и знаний;

- сетях мобильной телефонной связи;

- в прикладном программном обеспечении информационных систем и систем управления.

Источники информации

1. У.Питерсон, Э.Уэлдон. Коды, исправляющие ошибки. Мир, М., 1976.

2. Зима В.М., Молдовян А.А., Молдовян Н.А. Безопасность глобальных сетевых технологий. - СПб.; БХВ-Петербург, 2001.

3. ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. - М.: ГС СССР по стандартам, 1989.

4. Романец Ю.В., Тимофеев П.А., Шаньгин В.Ф. Защита информации в компьютерных системах и сетях. - М.: Радио и связь, 1999.

Похожие патенты RU2292122C1

название год авторы номер документа
СПОСОБ ПЕРЕДАЧИ И КОМПЛЕКСНОЙ ЗАЩИТЫ ИНФОРМАЦИИ 2007
  • Осмоловский Станислав Антонович
RU2367007C2
СПОСОБ АДАПТИВНОЙ ПЕРЕДАЧИ ИНФОРМАЦИИ 2004
  • Осмоловский С.А.
RU2264647C1
УНИВЕРСАЛЬНЫЙ СПОСОБ ПЕРЕДАЧИ ИНФОРМАЦИИ С КОНТРОЛИРУЕМЫМИ ПАРАМЕТРАМИ 2006
  • Осмоловский Станислав Антонович
RU2319199C2
Устройство для коррекции ошибок в блоках памяти 1982
  • Осмоловский Станислав Антонович
SU1086460A1
Устройство для приема дискретной информации с исправлением ошибок 1980
  • Осмоловский Станислав Антонович
SU919119A1
СПОСОБ БЛОЧНОГО ШИФРОВАНИЯ ИНФОРМАЦИИ 2004
  • Осмоловский С.А.
RU2266622C1
СПОСОБ ГЕНЕРАЦИИ СЛУЧАЙНЫХ ЧИСЕЛ 2003
  • Осмоловский С.А.
RU2246129C2
Система передачи данных по каналам с обратной связью 1980
  • Храмешин Геннадий Кузьмич
  • Осмоловский Станислав Антонович
  • Петров Владимир Иванович
  • Лелюхина Алевтина Михайловна
SU966923A1
Устройство для исправления пакетовОшибОК 1978
  • Насыпный Владимир Владимирович
  • Осмоловский Станислав Антонович
SU794756A1
СПОСОБ ШИФРУЮЩЕГО ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ 2003
  • Осмоловский С.А.
RU2254685C2

Реферат патента 2007 года СПОСОБ КОМПЛЕКСНОЙ ЗАЩИТЫ ИНФОРМАЦИИ

Изобретение относится к техническим средствам комплексной защиты информации при ее передаче и хранении. Техническим результатом является обеспечение эффективности каждого вида защиты и повышение качества обеспечения гарантированных характеристик информационной системы. Способ комплексной защиты информации осуществляют в следующей последовательности: до передачи в канал связи или перед записью в память анализируют состояние используемого канала связи или среды хранения информации определят из М возможных кодов параметры оптимального для данного состояния канала или среды хранения информации (n, k)-кода, подлежащая защите информация разбивают на q-ичные символы длиной l бит (q=2l), для каждого q-ичного символа вырабатывают комбинация гаммы длиной l бит от независимого от информации источника, для каждой совокупности из k информационных q-ичных символов формируют (n-k) избыточных q-ичных символов по правилам исходного двоичного (n, k)-кода, каждый q-ичный символ подвергают шифрующему стохастическому преобразованию с участием гаммы, после приема из канала связи или после считывания из памяти для каждого q-ичного символа вырабатывают комбинацию гаммы длиной l, синхронно с передающей стороной, выполняют обратное стохастическое дешифрующее преобразование каждого q-ичного символа с участием гаммы, локализуют с помощью проверочных соотношений исходного двоичного кода правильно принятые или считанные из памяти q-ичные символы, проверяют правильность локализации q-ичных символов кодового блока, недостоверно локализованные символы стирают, восстанавливают целостность сообщения путем исправления нелокализованных и стертых q-ичных символов каждого блока, выражая их значения через значения достоверно локализованных или уже исправленных q-ичных символов, при невозможности достоверного восстановления целостности кодового блока его стирают, подсчитывают число стертых блоков, определяют оптимальность на интервале наблюдения применяемого кода с исправлением ошибок текущего состояния канала, при выходе критерия оптимальности кода за заданные минимальный и максимальный пределы меняют синхронно на передающей и приемной части канала на оптимальный код по критерию максимума скорости передачи. 16 з.п. ф-лы.

Формула изобретения RU 2 292 122 C1

1. Способ комплексной защиты информации, характеризующийся тем, что для защиты от всех видов воздействий на информацию, в том числе, защиты от искажений в каналах и сетях связи и хранилищах информации, криптографической защиты от ознакомления, защиты от навязывания ложной информации, контроля подлинности и восстановления целостности информации, разграничения доступа пользователей к информации, защиты от умышленных деструктивных воздействий на информацию в информационных системах, обеспечения гарантированных информационных характеристик системы, подлежащую защите информацию подвергают единой совокупности операций обработки ансамблем кодов и шифров при однократно вводимой избыточности в следующей последовательности: до передачи в канал связи или перед записью в память анализируют состояние используемого канала связи или среды хранения информации, определяют из М возможных кодов параметры оптимального для данного состояния канала или среды хранения информации (n, k, q)-кода, подлежащую защите информацию разбивают на q-ичные символы длиной l бит (q=2l), для каждого q-ичного символа вырабатывают комбинацию гаммы ξ, длиной l бит от независимого от информации источника, для каждой совокупности из k информационных q-ичных символов формируют (n-k) избыточных q-ичных символов по правилам исходного двоичного (n, k)-кода, каждый q-ичный символ подвергают шифрующему стохастическому преобразованию с участием гаммы, после приема из канала связи или после считывания из памяти для каждого q-ичного символа вырабатывают комбинацию гаммы ξ длиной l синхронно с передающей стороной, выполняют обратное стохастическое дешифрующее преобразование каждого q-ичного символа с участием гаммы, локализуют с помощью проверочных соотношений исходного двоичного кода правильно принятые или считанные из памяти q-ичные символы, проверяют правильность локализации q-ичных символов кодового блока, недостоверно локализованные символы стирают, восстанавливают целостность сообщения путем исправления нелокализованных и стертых q-ичных символов каждого кодового блока, выражая их значения через значения достоверно локализованных или уже исправленных q-ичных символов, при невозможности достоверного восстановления целостности кодового блока, его стирают и передают повторно, подсчитывают число стертых блоков, определяют на интервале наблюдения оптимальность применяемого кода с исправлением ошибок при текущем состоянии канала, при выходе критерия оптимальности кода за заданные минимальный или максимальный пределы меняют синхронно на передающей и приемной части канала код на оптимальный по критерию максимума скорости передачи.2. Способ по п.1, отличающийся тем, что при защите от искажений в каналах и сетях связи и хранилищах информации восстанавливают целостность информации с гарантированной в произвольном канале достоверностью прямым кодовым исправлением ошибок в пределах исправляющей способности (n, k, q)-кода, обнаруживают ошибки с кратностью, превышающей исправляющую способность кода, повторно передают кодовые блоки с неисправленными искажениями, проводят адаптацию по заданному критерию оптимальности параметров и исправляющей способности кода при изменении интенсивности искажений в канале связи.3. Способ по п.1, отличающийся тем, что при криптографической защите от ознакомления выполняют независимо от применяемого помехоустойчивого кода преобразование q-ичных символов кода ансамблем шифров, сменяемым на каждом блоке шифрования, при этом прямое шифрующее стохастическое преобразование q-ичного символа обеспечивает, независимо от передаваемой информации, квазислучайный характер сигнала, обратное стохастическое дешифрующее преобразование q-ичного символа выполняет размножение искажений в q-ичном символе с обеспечением равной вероятности для каждого из q-1 возможных значений символа, за исключением переданного.4. Способ по п.1, отличающийся тем, что при защите от навязывания ложной информации, контроле подлинности и восстановлении целостности информации в канале с предумышленными помехами выполняют прямое кодовое исправление искажений q-ичным кодом, представляющим собой ансамбль случайных кодов на основе двоичного кода со сменой кода на каждом кодовом блоке и повторную передачу блоков с неисправленными искажениями.5. Способ по п.1, отличающийся тем, что для разграничения доступа пользователей к информации при хранении и передаче сообщений конкретного пользователя выполняют криптографическое стохастическое преобразование сообщения с использованием гаммы, вырабатываемой на индивидуальном ключе соответствующего пользователя.6. Способ по п.1, отличающийся тем, что при защите от умышленных деструктивных воздействий на информационные системы в виде преднамеренных помех в каналах связи и ввода в систему ложной деструктивной информации и защите от навязывания ложной информации устойчивый обмен информации осуществляют путем адаптации к состоянию канала, в том числе при значительном снижения качества канала.7. Способ по п.1, отличающийся тем, что достижение гарантированных характеристик информационных систем в произвольных условиях функционирования обеспечивают применением ансамблей кодов и шифров, меняющихся для каждого кодового блока и q-ичного символа соответственно, с обеспечением передачи в канал связи сигналов из всех возможных 2n на двоичной последовательности длины n, как результат смены стратегии в процессе борьбы с источником деструктивных воздействий на информационную систему.8. Способ по п.1, отличающийся тем, что локализацию правильно принятых q-ичных символов выполняют с помощью N=2n-k-1 проверочных соотношений кода, являющихся строками проверочной матрицы двоичного кода Н и их линейными комбинациями, проверка правильности приема q-ичных символов для j-го соотношения осуществляется путем суммирования по модулю 2 тех из n q-ичных символов, которым соответствует символ 1 в данном j-м проверочном соотношении и проверкой значения полученной суммы, соотношение считается выполненным, а q-ичные символы признаются правильно принятыми без искажений, если эта сумма равна комбинации из l нулевых двоичных символов, подсчитывают число локализованных символов Nл (Nл⊂[0, n]), число выполненных соотношений Nc (Nc⊂[0,2n-k-1]) и для каждого q-ичного символа с номером i - число выполнившихся соотношений, в которые входил этот символ, Mi.9. Способ по п.1, отличающийся тем, что проверку правильности локализации для кодовых блоков проводят путем проверки условий Nc=2r-t*-1, t*≤d-2, где t*=n-Nл, d - кодовое расстояние двоичного (n, k)-кода.10. Способ по п.1, отличающийся тем, что проверку правильности локализации отдельных q-ичных символов проводят путем проверки условий Мi(t*)≥Пq(t*), где Пq(t*) - пороговые значения числа выполнившихся соотношений для q-ичного символа при заданном значении t*, символы, для которых условие не выполняются, стирают, а величину Nл уменьшают на число стертых символов.11. Способ по п.1, отличающийся тем, что исправления нелокализованных и стертых символов для восстановления целостности информации выполняют, выражая значение исправляемого символа через значения локализованных или ранее исправленных символов, для чего выбирают проверочное соотношение, в которое входит один исправляемый символ и остальные только локализованные и ранее исправленные символы, значение исправляемого символа получают суммированием по модулю значений локализованных и ранее исправленных символов, входящих в выбранное проверочное соотношение.12. Способ по п.1, отличающийся тем, что анализ состояния используемого канала связи или среды хранения информации осуществляют с помощью передачи блока стохастического q-ичного кода с повторением (n, l, q), после приема выполняют посимвольное сравнение принятых q-ичных символов и подсчитывают число совпавших q-ичных символов, определяют долю совпавших символов относительно длины кода n, по значению полученной величины доли искаженных q-ичных символов выбирают параметры кода с исправлением ошибки для передачи информации в данном канале.13. Способ по п.1, отличающийся тем, что анализ оптимальности применяемого кода по критерию максимума скорости передачи выполняют на интервале наблюдения последних Х принятых блоков путем подсчета числа блоков с неисправленными искажениями, определения доли таких блоков на интервале наблюдения и сравнения значения этой доли со значениями верхней и нижней границ интервала оптимальности.14. Способ по п.1, отличающийся тем, что формирование избыточных символов выполняют для i-го q-ичного символа (n, k, q)-кода (i⊂[1, n-k]) суммированием по модулю 2 тех информационных q-ичных символов, которым соответствует символ 1 в i-й строке проверочной матрицы Н исходного двоичного (n, k)-кода.15. Способ по п.1, отличающийся тем, что генерацию значений гаммы ξ длиной l выполняют с помощью регистра сдвига с нелинейными функциями в цепях обратной связи на основе таблиц со случайным заполнением.16. Способ по п.1, отличающийся тем, что криптографическое стохастическое преобразование выполняют с помощью операций на основе таблиц со случайным заполнением.17. Способ по п.16 или 17, отличающийся тем, что начальное заполнение регистра сдвига с обратной связью и таблиц случайными числами для стохастического преобразования и в цепях обратной связи является ключом криптографической защиты.

Документы, цитированные в отчете о поиске Патент 2007 года RU2292122C1

СПОСОБ ГЕНЕРАЦИИ СЛУЧАЙНЫХ ЧИСЕЛ 2003
  • Осмоловский С.А.
RU2246129C2
УСТРОЙСТВО для ОБНАРУЖЕНИЯ ОШИБОК 0
  • В. М. Масловский, Л. А. Зюзин, С. А. Осмоловский В. Е. Монахов
SU333717A1
Способ передачи и приема дискретной информации для систем связи с комбинированной обратной связью 1977
  • Попше Юон Ионашевич
  • Писарчук Владимир Минович
  • Песоцкий Владимир Ильич
  • Борисенко Виталий Михайлович
SU767992A1
Устройство для приема дискретной информации с исправлением ошибок 1980
  • Осмоловский Станислав Антонович
SU919119A1
Адаптивная система передачи информации 1983
  • Финаев Валерий Иванович
  • Жабский Игорь Иванович
SU1109927A1
Адаптивная система передачи дискретных сообщений 1986
  • Виноградов Ростислав Иванович
  • Семенюта Андрей Николаевич
SU1497755A1
Способ диагностики ретиношизиса 1986
  • Линник Леонид Андреевич
  • Рассказова Наталья Борисовна
SU1388035A1
US 6330277 A1, 11.12.2001
НОЖ ОФТАЛЬМОМИКРОХИРУРГИЧЕСКИЙ 2013
  • Малюгин Борис Эдуардович
  • Караваев Александр Александрович
  • Бессарабов Анатолий Никитич
RU2523149C1
EP 0673133 A1, 20.09.1995
WO 00/25203 A1, 04.05.2000.

RU 2 292 122 C1

Авторы

Осмоловский Станислав Антонович

Даты

2007-01-20Публикация

2005-05-11Подача