Изобретения относятся к области машиностроения, преимущественно к силовым и энергетическим установкам, и могут быть использованы для получения тяги и обеспечения движения транспортных средств различного назначения.
Известна камера пульсирующего двигателя детонационного горения (см. патент RU №2084675, F02 07/02, 02.07.1979), в основе пульсирующего режима работы которой лежит эффект Гартмана (см. Ляхов В.Н., Подлубный В.В., Татаренко В.В. Воздействие ударных волн и струй на элементы конструкций. М.: Машиностроение, 1989). В корпусе камеры расположены сверхзвуковое сопло и соосно с ним резонатор в виде трубки, обращенной одним открытым концом в сторону истечения рабочего тела, причем трубка замкнута с другого конца и между внутренней поверхностью корпуса и наружной поверхностью сопла образована полость, являющаяся камерой смешения, выходная часть которой представляет критическое сечение с дальнейшим переходом в сверхзвуковое сопло внешнего расширения с усеченным телом. Резонатор предназначен для создания ударных волн и возбуждения детонационного горения. Сверхзвуковое сопло используется для разгона газов до скоростей М>2 и направления их внутрь резонатора. Кроме того, резонатор и сверхзвуковое сопло установлены в корпусе соосно таким образом, что между внутренней поверхностью корпуса и наружной поверхностью сопла образована полость, являющаяся камерой смешения, предназначенная для создания рабочей смеси.
Недостатком устройства является то, что оно не обеспечивает оптимальных условий создания неравновесной газовой смеси для эффективного преобразования ее энергии в работу.
Известен способ получения тяги, заключающийся в том, что часть горючего сжигают с избытком окислителя, последующую подачу горючего проводят после его пиролиза и быстрого охлаждения продуктов пиролиза. Преобразование внутренней энергии газовой смеси производят посредством периодически повторяющегося процесса детонации, при этом подачу горючего в продукты сгорания осуществляют до достижения суммарного значения коэффициента избытка окислителя, равного 0,1-0,9, а сжигание горючего с окислителем проводят с коэффициентом избытка окислителя, равным 1-4 (см. патент RU №2034996, F 02 K 3/08, 11.10.93).
Недостатками известного способа являются высокие энергетические затраты на пиролиз горючего.
Известен способ и устройство для получения тяги (см. патент RU №2231667, F 02 K 7/00, 27.06.2004). Способ заключается в подаче в камеру со сверхзвуковой скоростью газовой смеси с экзотермически активными элементами для дальнейшего преобразования. При этом газовая смесь сначала подается в инверторную полость камеры и далее через периферийную кольцевую щель направляется в конверторную полость, в которой происходит преобразование внутренней энергии потока неравновесной газовой смеси. Устройство для реализации способа содержит рабочую камеру в виде осесимметричного тела вращения, разделенную непроницаемой осесимметричной перегородкой на две полости, одна из которых, инверторная, выполнена с внутренним, как минимум однозаходным, спиральным каналом, расширяющимся в направлении периферийной кольцевой щели, а другая - конверторная с полузамкнутым, как минимум однозаходным, спиральным каналом, сходящимся от периферийной кольцевой щели в направлении асимптотического центра.
Недостаток известного способа и устройства для получения тяги заключается в высоких потерях, которыми обладает сложный газодинамический тракт рабочей камеры.
Наиболее близким из известных технических решений к предлагаемому способу и устройству является (см. патент RU №2179254, F 02 K 7/04) способ получения тяги, основанный на том, что в полузамкнутую детонационную резонансную камеру подают топливо и воздух (горючую смесь) с коэффициентом избытка воздуха 0,8-1,2 и осуществляют детонационный процесс сжигания горючей смеси в пульсирующем режиме. Топливо и воздух в детонационную резонансную камеру подают двумя потоками: потоком воздуха и потоком горючей смеси, полученной путем окисления топлива воздухом с коэффициентом избытка воздуха менее 0,1. Устройство для реализации этого способа содержит полузамкнутую детонационную резонансную камеру, камеру формирования потока горючей смеси с элементами подачи смеси в детонационную резонансную камеру, инициатор детонации и камеру формирования воздушного потока. Камера формирования горючей смеси и детонационная резонансная камера размещены внутри камеры формирования воздушного потока соосно ей с образованием щели, в которой размещено кольцевое сопло для подачи воздуха в детонационную резонансную камеру.
Недостатком данного способа и устройства является ограниченность в выборе управляющих параметров, обеспечивающих эффективный контроль быстропротекающего процесса детонационного горения топливной смеси.
Задачей заявляемых изобретений является повышение топливной эффективности силовых и энергетических установок за счет проведения основного процесса преобразования энергии топливной смеси в работу по термически неравновесным каналам с целенаправленным вкладом энергии в степени свободы системы, определяющие эффективность протекания заданного процесса, а также снижение массы, повышение надежности и ресурса устройств.
Технический результат, получаемый при осуществлении изобретений, заключается в улучшении удельных тяговых характеристик, снижении массы и повышении надежности устройства.
Решение поставленной задачи и технический результат достигаются тем, что согласно заявляемому изобретению в предлагаемом способе получения тяги, основанном на подготовке топливной смеси, подаче ее в полузамкнутую детонационную резонансную камеру и осуществлении пульсирующего детонационного горения, часть топливной смеси направляют в полузамкнутую детонационную резонансную камеру через перфорированную стенку полузамкнутой детонационной резонансной камеры, на которую подают электрический потенциал и управляют процессом высокочастотного детонационного горения топливной смеси.
Данный способ реализуется в устройстве для получения тяги, содержащем корпус, нагнетатель, газогенератор топливной смеси с элементами подачи и приготовления топливной смеси, полузамкнутую детонационную резонансную камеру и инициатор детонации. При этом газогенератор и полузамкнутая детонационная резонансная камера разделены перфорированной стенкой, на которую подается электрический потенциал, а щелевое сопло образовано перфорированной стенкой и профилированным расщепителем газового потока, размещенным в полузамкнутой детонационной резонансной камере для изменения соотношения расходов воздуха по внешнему и внутреннему контурам устройства.
Перфорированная стенка полузамкнутой детонационной резонансной камеры может быть выполнена из пористого материала с катализатором, в нее могут быть внедрены углеродные нанотрубки, она может быть гибкой и иметь со стороны газогенератора опорное седло.
На чертеже приведена схема устройства, поясняющая техническую сущность заявляемых изобретений.
Согласно изобретениям способ получения тяги реализуется с помощью устройства, содержащего корпус 1, нагнетатель 2, газогенератор топливной смеси 3 с элементами подачи и приготовления топливной смеси 4, полузамкнутую детонационную резонансную камеру 5 и инициатор детонации 6. Газогенератор 3 и полузамкнутая детонационная резонансная камера 5 разделены перфорированной стенкой 7, на которую подается электрический потенциал, а щелевое сопло 8 образовано перфорированной стенкой 7 и профилированным расщепителем газового потока 9, размещенным в полузамкнутой детонационной резонансной камере 5. При этом перфорированная стенка 7 может быть выполнена из пористого материала с катализатором, в нее могут быть внедрены углеродные нанотрубки, она может быть гибкой и иметь со стороны газогенератора 3 седло 10.
Описываемое устройство работает следующим образом.
Воздух из нагнетателя 2 через щелевое сопло 8 подается в полузамкнутую детонационную резонансную камеру 5 со сверхзвуковой скоростью. Подготовленная топливная смесь также подается в полузамкнутую детонационную резонансную камеру 5 через сопло 8 и отверстия перфорированной стенки 7. В результате смешения воздуха с конверсионным топливом и ударно-волновых процессов сталкивающихся струй горючая смесь детонирует, в полузамкнутой детонационной резонансной камере 5 повышается давление и создается тяга. При этом из-за возникшего противодавления прекращается поступление в полузамкнутую детонационную резонансную камеру 5 компонентов топлива. Продукты детонационного горения истекают из открытого торца полузамкнутой детонационной резонансной камеры 5, давление понижается, в полузамкнутую детонационную резонансную камеру 5 вновь поступает горючая смесь, и процесс повторяется.
Предложенный способ и устройство для получения тяги позволяет повысить топливную эффективность силовых и энергетических установок, снизить их массу, повысить надежность и ресурс.
название | год | авторы | номер документа |
---|---|---|---|
ГИПЕРЗВУКОВОЙ ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ | 2007 |
|
RU2347097C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЯГИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2179254C2 |
ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ | 2010 |
|
RU2432483C1 |
СПОСОБ ФУНКЦИОНИРОВАНИЯ ПУЛЬСИРУЮЩЕГО ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) | 2010 |
|
RU2446306C1 |
СПОСОБЫ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО УГЛЕРОДА (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ИХ РЕАЛИЗАЦИИ | 2007 |
|
RU2344074C1 |
ПУЛЬСИРУЮЩИЙ ДВИГАТЕЛЬ ДЕТОНАЦИОННОГО ГОРЕНИЯ | 1993 |
|
RU2066778C1 |
ВОЗДУШНО-РЕАКТИВНЫЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ | 2019 |
|
RU2706870C1 |
ПУЛЬСИРУЮЩАЯ ДЕТОНАЦИОННАЯ УСТАНОВКА ДЛЯ СОЗДАНИЯ СИЛЫ ТЯГИ | 2013 |
|
RU2526613C1 |
МАЛОРАЗМЕРНЫЙ БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ С ПУЛЬСИРУЮЩИМ ДЕТОНАЦИОННЫМ ДВИГАТЕЛЕМ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ | 2008 |
|
RU2373114C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО УГЛЕРОДА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2009 |
|
RU2408532C1 |
Изобретение относится к машиностроению, преимущественно к силовым и энергетическим установкам, и может быть использовано для получения тяги. Способ получения тяги заключается в подготовке топливной смеси, подаче ее в полузамкнутую детонационную резонансную камеру и осуществлении детонационного процесса горения топливной смеси в пульсирующем режиме. Часть топливной смеси направляют в полузамкнутую детонационную резонансную камеру через перфорированную стенку полузамкнутой детонационной резонансной камеры, при этом подают на перфорированную стенку электрический потенциал и осуществляют процесс высокочастотного детонационного горения топливной смеси. Способ реализуется с помощью устройства, содержащего корпус, нагнетатель, газогенератор топливной смеси с элементами подачи и приготовления топливной смеси, полузамкнутую детонационную резонансную камеру, инициатор детонации и щелевое сопло. Газогенератор топливной смеси и полузамкнутая детонационная резонансная камера разделены перфорированной стенкой, на которую подается электрический потенциал. Изобретение позволяет улучшить удельные тяговые характеристики, снизить массу и повысить надежность устройств получения тяги. 2 н. и 3 з.п. ф-лы, 1 ил.
СПОСОБ ПОЛУЧЕНИЯ ТЯГИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2179254C2 |
US 4881373 A, 21.11.1989 | |||
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 1928 |
|
SU79482A1 |
СПОСОБ ПОЛУЧЕНИЯ ТЯГИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2034996C1 |
Устройство для сжигания топлива | 1989 |
|
SU1652757A1 |
US 6446428 В1, 10.09.2002 | |||
US 3595020 A, 27.07.1971. |
Авторы
Даты
2007-04-10—Публикация
2005-03-14—Подача