Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов, точнее к устройству механизма крепления датчика внутритрубного дефектоскопа.
Как правило, датчики дефектоскопа устанавливаются концентрично по периметру корпуса дефектоскопа для того, чтобы в процессе контроля состояния трубы перекрыть всю ее поверхность. Однако труба не представляет собой идеальное тело. В процессе движения внутритрубный дефектоскоп проходит закругления, участки трубы различного диаметра или различной толщины стенок.
Механизм крепления датчика внутритрубного дефектоскопа в процессе его движения должен обеспечить плотное прилегание датчика к стенке трубы и постоянную его ориентацию в радиальном направлении относительно продольной оси корпуса дефектоскопа.
Известны различные системы датчиков внутритрубного дефектоскопа.
Система датчиков по патенту США 4330748, публикация 18 мая 1982 года, МПК: G01R 033/00; G01N 027/72; G01N 027/82, а также патенту США 4468619, публикация 28 августа 1984, МПК G01N 027/82, содержит датчики, установленные на основания - салазки, расположенные по периметру корпуса дефектоскопа. Основание представляет собой согнутую в виде параллелограмма гибкую пластину, закрепленную посередине к основанию на корпусе дефектоскопа. Одна ветвь пластины является опорой для датчиков, другая поддерживает опору от отгибания от стенки трубы в месте закрепления датчиков.
Данная система датчиков дефектоскопа благодаря своей жесткости в поперечном направлении обеспечивает постоянную ориентацию этих датчиков в радиальном направлении, однако плохо обеспечивает постоянное прилегание датчиков к поверхности трубы, так как из-за жесткости системы может отслеживать только малые изменения диаметра.
Система датчиков по патенту США 5864232, публикация 26 января 1999 года, МПК G01N 027/72, содержит датчики, установленные на держателях, каждый из которых закреплен на корпусе дефектоскопа с помощью пары рычагов. Рычаги разнесены в продольном направлении в плоскости, проходящей через ось симметрии дефектоскопа и способны поворачиваться в этой плоскости. Каждый указанный рычаг имеет ось вращения в месте крепления держателя к рычагу и в месте крепления рычага к корпусу.
Держатель вместе с датчиками выполнен по схеме "параллелограмма", которая является устойчивой и благодаря своей жесткости в поперечном направлении обеспечивает постоянную ориентацию этих датчиков в радиальном направлении при прохождении прямолинейных участков трубопровода. Однако такая система не обеспечивает контакт датчиков при прохождении закруглений и в местах изменения диаметра трубы, так как основание датчиков практически может перемещаться только параллельно корпусу и не имеет возможности отслеживать изгибы трубы.
Патент России 2225977, публикация 20 марта 2004 года, МПК G01M 3/08, F17D 5/00, G01N 27/72 является наиболее близким аналогом. Датчики установлены в держателях, установленных по периметру вокруг оси симметрии дефектоскопа. Каждый держатель датчиков закреплен на корпусе дефектоскопа с помощью пары рычагов, способных поворачиваться в плоскости, проходящей через ось симметрии дефектоскопа. В каждом держателе датчиков все датчики находятся со стороны хвостовой части дефектоскопа по отношению к обеим осям вращения пары рычагов в этом держателе датчиков. Расстояние между указанными осями вращения в держателе датчиков составляет не более 0,2 длины рычага.
Данная конструкция крепления датчиков обеспечивает их прижатие во время движения по прямолинейным участкам трубопровода, в том числе и при изменении диаметра трубы, так как датчик благодаря рычажной системе и шарнирным соединениям может повторять изменения профиля стенок трубы. Но конструкция обладает сравнительно малой устойчивостью к боковым воздействиям, так как два рычага крепятся как у основания, так и у корпуса практически в одной точке. При прохождении закруглений или выступов в стенке трубы основание может сместиться в сторону от необходимой траектории движения, кроме того, датчики могут потерять контакт со стенкой.
Заявляемое изобретение решает задачу обеспечения постоянного контакта датчика со стенкой трубы как на прямолинейных участках, так и в закруглениях и в местах изменения диаметра трубы. При этом механизм крепления датчика обеспечивает практически постоянное расположение датчика в продольном направлении относительно корпуса дефектоскопа при значительных изменениях диаметров исследуемой трубы, что дает возможность точного определения координат дефектов.
Механизм крепления датчика к корпусу внутритрубного дефектоскопа по изобретению содержит кронштейн, закрепленный на корпусе дефектоскопа в плоскости, проходящей через продольную ось корпуса, первый двуплечий рычаг, на конце первого плеча которого закреплен датчик, второй рычаг, один конец которого шарнирно прикреплен к концу второго плеча упомянутого первого рычага, а второй конец шарнирно прикреплен к корпусу. Механизм содержит также третий рычаг, один конец которого шарнирно прикреплен к шарнирной опоре упомянутого первого рычага, а второй конец снабжен направляющим механизмом, выполненным с возможностью обеспечения перемещения упомянутого датчика в вертикальной плоскости при изменении диаметра исследуемой трубы. Между третьим рычагом и кронштейном установлен пружинный механизм, работающий на сжатие и обеспечивающий прижатие датчика к внутренней стенке исследуемой трубы.
Благодаря такой конструкции механизма при изменении внутреннего диаметра трубы обеспечивается перемещение датчика в вертикальном направлении практически без смещения датчика в продольном направлении относительно корпуса дефектоскопа, так как точка крепления датчика движется не по радиусу, как обычно в системах крепления датчиков, а вертикально. Кроме того, обеспечивается устойчивость датчика в поперечном направлении, так как точки опоры механизма к кронштейну, закрепленному на корпусе разнесены. При ударе первого рычага о значительное по размерам препятствие внутри трубы механизм крепления датчика к корпусу имеет такую конструкцию, что сложится, а энергия удара будет поглощена пружинным механизмом.
В частном случае выполнения направляющий механизм содержит два ползуна, установленных с возможностью скольжения в направляющих, выполненных в упомянутом кронштейне.
Благодаря закреплению конца третьего рычага в направляющих кронштейна вся система является более устойчивой в поперечном направлении.
В частном случае выполнения пружинный механизм содержит втулку, шарнирно закрепленную на кронштейне, шток, жестко закрепленный на упомянутом третьем рычаге параллельно его оси и вставленный в полость упомянутой втулки и цилиндрическую пружину, надетую на втулку и упертую с одной стороны в кронштейн, с другой стороны - о рычаг.
В частности, второй конец упомянутого второго рычага может быть шарнирно прикреплен к корпусу посредством шарнирного крепления на упомянутом кронштейне.
Механизм выполнен с шарнирами, работающими в одной плоскости для того, чтобы избежать бокового смещения датчика.
На первом рычаге перед датчиком может быть установлен ролик, выполненный с возможностью вращения для обеспечения защиты датчика при прохождении выступов трубы.
Кроме этого, датчик может быть закреплен на рычаге с возможностью поворота для обеспечения более надежного прижима верхней плоскости датчика и точного отслеживания неровностей трубы.
На корпусе дефектоскопа устанавливается ряд механизмов крепления датчиков, расположенных в плоскостях, проходящих через ось симметрии корпуса дефектоскопа, для того, чтобы перекрыть всю образующую трубы измерительными датчиками.
На Фиг.1 приведена схема механизма крепления датчика, на Фиг.2 - пружинный механизм в сборе, на Фиг.3 - разобранный механизм, на Фиг.4 - показано устройство втулки, на Фиг.5 - кронштейн и на Фиг.6 - вид механизма спереди.
Механизм крепления датчика (Фиг.1) содержит кронштейн 2, закрепленный на корпусе 1, первый двуплечий рычаг 3, второй рычаг 4, третий рычаг 5. На конце первого плеча первого рычага 3 закреплен датчик 6. Второй рычаг 4 шарнирно прикреплен к кронштейну 2 и к первому рычагу 3.
Один конец третьего рычага 5 шарнирно прикреплен к шарнирной опоре 6 первого рычага 3. Направляющий механизм выполнен следующим образом. Второй конец третьего рычага снабжен двумя ползунами 7 и 8, установленными в направляющих 9 и 10, выполненных в кронштейне 2 (Фиг.5). Направляющие могут быть выполнены в виде прорезей или, выполнены в накладках, установленных на кронштейне. Направляющие 9 и 10 ориентированы таким образом, чтобы при выбранной длине всех рычагов точка крепления датчика 6 перемещалась в плоскости 21, перпендикулярной оси симметрии корпуса 1 дефектоскопа. Направляющие могут быть криволинейными и прямолинейными. В общем случае их форма и направление выбираются путем кинематических расчетов или подбором.
Направляющий механизм может быть выполнен иначе. На конце рычага может быть выполнен один ползун, а в кронштейне - одна направляющая. В этом случае проще обеспечить движение конца рычага, однако могут возникнуть нежелательные перекосы конца рычага, что приведет к смещению механизма в поперечном направлении.
Между третьим рычагом 5 и кронштейном 2 установлен пружинный механизм 11 (Фиг.2-Фиг.4). Пружинный механизм 11 обеспечивает прижатие датчика 6 к трубе 20 и содержит втулку 12, закрепленную на кронштейне 2 с помощью шарнира 13, шток 14, жестко закрепленный третьем рычаге 5 в плоскости, параллельной оси третьего рычага 5. Шток 14 вставлен в полость 15 втулки 12. На втулку 12 и шток 14 надета цилиндрическая пружина 16, которая упирается в упор 17 и в элементы шарнира 13, закрепленного на кронштейне 2.
Пружинный механизм также может быть выполнен в виде иного пружинного амортизатора.
Шарниры, крепящие первый рычаг 3 к второму рычагу 4 и второй рычаг 4 к кронштейну 2, могут быть выполнены различным образом, в том числе из гибких элементов, обеспечивающих перемещение рычагов в плоскости механизма и препятствующих смещению рычагов в перпендикулярной плоскости.
Датчик 6 прикрепляется к рычагу 3 с помощью гибкого элемента 18, который обеспечивает более надежный прижим и отслеживание неровностей трубы 20 верхней плоскостью датчика 6. Перед датчиком установлен ролик 19, предохраняющий датчик 6 от ударов о элементы, торчащие из трубы 20.
При движении дефектоскопа в трубе датчик 6 посредством механизма прижимается к внутренней стенке трубы 20 благодаря пружинному механизму 11. При изменении диаметра трубы 20 датчик 6 перемещается, при этом изменяется положение рычагов 3, 4 и 5. При смещении третьего рычага 5 ползуны 7 и 8 перемешаются по направляющим 9 и 10 соответственно. При этом сохраняется положение датчика 6 относительно корпуса 1 дефектоскопа в продольном сечении, то есть его точка крепления перемещается в плоскости 21. Механизм позволяет отслеживать неровности трубы, изменения его диаметра, при этом сохраняет положение датчика 6 также и в плоскости, параллельной оси симметрии корпуса 1 дефектоскопа. Так же работают все механизмы крепления датчиков 6, установленные по образующей корпуса 1 (Фиг.6).
название | год | авторы | номер документа |
---|---|---|---|
МЕХАНИЗМ КРЕПЛЕНИЯ ДАТЧИКА К КОРПУСУ ВНУТРИТРУБНОГО ДЕФЕКТОСКОПА | 2005 |
|
RU2298784C1 |
УСТРОЙСТВО СИСТЕМЫ ДАТЧИКОВ ВНУТРИТРУБНОГО ДЕФЕКТОСКОПА (ВАРИАНТЫ) | 2005 |
|
RU2293312C1 |
УСТРОЙСТВО СИСТЕМЫ ДАТЧИКОВ ВНУТРИТРУБНОГО ДЕФЕКТОСКОПА | 2006 |
|
RU2325634C2 |
УСТРОЙСТВО СИСТЕМЫ ДАТЧИКОВ ВНУТРИТРУБНОГО ДЕФЕКТОСКОПА | 2007 |
|
RU2336521C1 |
МАГНИТНАЯ СИСТЕМА ТРУБНОГО ДЕФЕКТОСКОПА | 2006 |
|
RU2327980C2 |
СЕКЦИЯ ВНУТРИТРУБНОГО ДЕФЕКТОСКОПА | 2005 |
|
RU2293315C1 |
МАГНИТНАЯ СИСТЕМА ВНУТРИТРУБНОГО ДЕФЕКТОСКОПА | 2005 |
|
RU2293314C1 |
СПОСОБ НАСТРОЙКИ ИЗМЕРИТЕЛЬНОЙ СИСТЕМЫ ВНУТРИТРУБНОГО ДЕФЕКТОСКОПА И УСТРОЙСТВО НАСТРОЙКИ | 2006 |
|
RU2325635C1 |
СПОСОБ ЗАЩИТЫ ОТ ВЗРЫВА ПРИ РАБОТЕ ВНУТРИТРУБНОГО ДЕФЕКТОСКОПА И УСТРОЙСТВО СИСТЕМЫ ЗАЩИТЫ | 2005 |
|
RU2301940C1 |
СПОСОБ ВВОДА ВНУТРИТРУБНОГО СНАРЯДА В ТРУБУ ТРУБОПРОВОДА И УСТРОЙСТВО ВВОДА | 2006 |
|
RU2331015C1 |
Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов. Механизм содержит кронштейн, закрепленный на корпусе дефектоскопа в плоскости, проходящей через продольную ось корпуса, первый двуплечий рычаг, на конце первого плеча которого закреплен датчик, второй рычаг, один конец которого шарнирно прикреплен к концу второго плеча упомянутого первого рычага, а второй конец шарнирно прикреплен к корпусу. Механизм содержит также третий рычаг, один конец которого шарнирно прикреплен к шарнирной опоре первого рычага, а второй конец снабжен направляющим механизмом, выполненным с возможностью обеспечения перемещения датчика в вертикальной плоскости при изменении диаметра исследуемой трубы. Между третьим рычагом и кронштейном установлен пружинный механизм, работающий на сжатие и обеспечивающий прижатие датчика к внутренней стенке исследуемой трубы. Технический результат: обеспечение постоянного контакта датчика со стенкой трубы в местах закруглений и изменений диаметра трубы и практически постоянного расположения датчика в продольном направлении относительно корпуса дефектоскопа при значительных изменениях диаметров исследуемой трубы. 7 з.п. ф-лы, 6 ил.
ВНУТРИТРУБНЫЙ ДЕФЕКТОСКОП | 2003 |
|
RU2225977C1 |
ВНУТРИТРУБНЫЙ ДЕФЕКТОСКОП | 2003 |
|
RU2248498C1 |
НОСИТЕЛЬ ДАТЧИКОВ ДЛЯ ВНУТРИТРУБНОГО ИНСПЕКЦИОННОГО СНАРЯДА (ВАРИАНТЫ) | 2002 |
|
RU2204113C1 |
Автоматическая телефонная станция | 1929 |
|
SU36485A1 |
US 5864232 А, 26.01.1999 | |||
US 4447777 A, 08.05.1984. |
Авторы
Даты
2007-05-10—Публикация
2005-12-21—Подача