Изобретение относится к оптическим исследованиям процессов массообмена между жидкостью и газом в аппаратах химической, микробиологической, нефтяной промышленности, инженерной экологии и в природных процессах, в которых происходит растворение газов в объеме прозрачной жидкости. При проведении исследований нестационарного растворения газов в жидкости исследуют динамику изменения концентрации газа во времени и по объему среды.
Известен способ определения растворимости газов в жидкости, основанный на определении изменения показателя преломления смеси жидкости и газа [Константинов В.Б., Малый А.Ф., Бабенко В.А. Использование голографической интерферометрии для определения растворимости газа в жидкости. // Письма в Журнал технической физики. 2003. Т.29. вып. 13. С.83-88]. В этой работе исследование процесса растворения газа в жидкости проводилось предварительным насыщением исследуемой жидкости газом из газовой фазы, последующим сжатием жидкости в емкости механическим воздействием или подключением емкости к баллону с газом и измерением показателя преломления жидкости с растворенным в ней газом в зависимости от давления.
Недостатком этого способа является невозможность одновременных измерений в газовой фазе и в жидкости при нестационарном растворении газа.
Наиболее близким техническим решением, выбранным в качестве прототипа, является способ исследования процессов растворения газов в объеме жидкости, заключенной в емкости, в котором расширяют возможности использования путем размещения пасты, предварительно насыщенной газом [Заявка РФ №93010871/04, кл. G01N 21/78, опублик. 20.06.1996].
Недостатком этого способа является невозможность одновременных измерений растворенного газа в объеме пасты и в объеме жидкости, при нестационарном растворении газа.
Задачей изобретения является способ исследования процессов растворения газов в прозрачной жидкости, расширяющий возможности измерений концентраций растворенного газа при нестационарных процессах.
Поставленная задача решается тем, что исследования процессов растворения газов в объеме прозрачной жидкости, заключенной в емкости, проводят путем размещения в емкости пасты, предварительно насыщенной газом.
При этом паста, размещенная в исследуемой жидкости, представляет собой прозрачную инертную среду, а показатель преломления пасты, насыщенной газом, равен показателю преломления жидкости.
Кроме того, в пасту добавляют прозрачные частицы с показателем преломления, равным показателю преломления жидкости и в качестве материала частиц используют стекло.
Способ исследования процесса растворения газов в прозрачной жидкости осуществляется следующим образом. Измеряют показатель преломления исследуемой жидкости и пасты - высоковязкой среды, содержащей твердые частицы с помощью, например, рефрактометра. Пасту, представляющую собой прозрачную инертную среду с показателем преломления, меньшим показателя преломления исследуемой жидкости, насыщают исследуемым газом, измеряя показатель преломления пасты, например, рефрактометром, до совпадения значения показателя преломления пасты, насыщенной газом, и исследуемой жидкости. Размещают пасту, насыщенную газом, и исследуемую жидкость в емкости таким образом, чтобы паста находилась в жидкости.
Если парциальное давление исследуемого газа в пасте при ее насыщении выше, чем в жидкости, то в жидкость поступает из пасты растворяемый газ. При этом увеличивается концентрация растворенного газа в жидкости и уменьшается концентрация растворенного газа в пасте, что в обоих случаях приводит к изменению плотности сред. Связь между плотностью среды ρ и ее показателем преломления n дается эмпирической формулой Гладстона-Дейла для удельной рефракции r [Иоффе Б.В. Рефрактометрические методы химии. Л.: Химия. 1983, 352 с.]:
Удельная рефракция r не зависит от внешних условий и агрегатного состояния, а удельная рефракция смесей практически аддитивна и является функцией массовых долей р компонентов, что для смеси жидкости и растворенного газа равно
где n∑ - показатель преломления смеси жидкость - растворенный газ,
mж и mг - массы жидкости и растворенного газа соответственно.
Подставляя (4) в (2), получаем для смеси жидкость - растворенный газ
Для смеси паста - растворенный газ формула (5) имеет вид
В правой части уравнений (5 и 6) все величины кроме mг или известны из таблиц или предварительно определяются известными методами. Поэтому в процессе насыщения пасты газом или массообмена газом между пастой и жидкостью измерение текущих значений n∑ж и n∑п дает возможность определить текущее значение mг и в пасте, и в жидкости. Значения показателя преломления рефрактометром измеряют непосредственно, а с помощью интерферометра регистрируют относительное изменение коэффициента преломления Δn∑ по относительному сдвигу интерференционных полос Δk, которые связаны соотношением
где λ - длина волны излучения; L - длина хода луча через исследуемый объект.
Если паста является прозрачной средой, инертной к растворяемому в ней газу и исследуемой жидкости, а после насыщении ее газом показатель преломления пасты равен показателю преломления жидкости, то при размещении пасты в жидкости они являются иммерсионной системой. Поэтому при масообмене газом между пастой и жидкостью изменения показателя преломления при нестационарном растворении газа одновременно измеряют, например, интерферометрическим методом в объеме пасты и в объеме жидкости от одного и того же значения, что расширяет возможности исследования нестационарного процесса растворения.
Добавлением в пасту прозрачных частиц с показателем преломления, равным показателю преломления жидкости, контролируют процесс насыщения пасты газом и фиксируют момент совпадения показателя преломления частиц и пасты, насыщенной газом, например, по наблюдению полоски Беке или с помощью интерферометра [Иоффе Б.В. Рефрактометрические методы химии. Л.: Химия, 1983, 352 с.]. После размещения пасты в жидкости и начала растворения газа определяют изменения показателя преломления в объеме пасты относительно прозрачных частиц, а использование в качестве материала прозрачных частиц стекла обусловлено стабильностью его показателя преломления, что расширяет возможности исследования нестационарных процессов растворения газов в жидкости.
Пример 1. Для оценки возможности одновременного измерения показателя преломления при массообмене газом по обе стороны поверхности раздела брали жидкость, которая представляла собой смесь альфабромнафталина n20 Д=1,658 и декана n20 Д=1,412 и готовилась добавлением декана в альфабромнафталин и перемешиванием до получения показателя преломления смеси равным n20 Д=1,518. Показатель преломления жидкости измеряли на рефрактометре Аббе. Жидкая основа пасты представляла собой водный раствор смеси раданистого аммония и йодистого аммония, массовые доли компонентов составляли NH4CNS:NH4J:H2O=6:6:3. Добавлением воды получали показатель преломления водного раствора равным n20 Д=1,517. Показатель преломления измеряли на рефрактометре Аббе. Полученный водный раствор размещали в кювете размером 0,02×0,02×0,04 м и насыщали диоксидом углерода подачей пузырьков газа через слой до получения показателя преломления смеси равным показателю преломления n20 Д=1,518. Измерения показателя преломления проводили отбором проб с помощью шприца и измерением на рефрактометре Аббе. В кювету сверху добавляли смесь альфабромнафталина n20 Д=1,658 и декана n20 Д=1,412, которая не растворима в водном растворе солей и обладала меньшей, чем водный раствор солей плотностью. Поэтому указанная смесь располагалась слоем над раствором солей и наблюдалась четкая граница раздела между ними. Изменение показателей преломления жидкости и раствора (Δnж и Δnp) из-за переноса газа через поверхность раздела определялось по обе стороны поверхности раздела с помощью голографического интерферометра по относительному сдвигу интерференционных полос Δk одновременно и на одинаковом расстоянии от поверхности раздела по формуле (7) при λ=0,63 мкм и L=0,02 м.
Приведенные данные показывают возможность одновременного измерения изменения показателя преломления по обе стороны поверхности раздела двух жидкостей при переносе газа через поверхность раздела, а значит расширение возможностей предлагаемого способа исследования нестационарных процессов растворения газов в жидкости.
Пример 2. Для оценки расширения возможностей исследования при добавлении прозрачных частиц использовались прозрачные шарики из стекла K8 диаметром 2 мм показателем преломления n20 Д=1,518, которые помещали в водный раствор солей NH4CNS:NH4J:Н2O с показателем преломления n20 Д=1,517. Полученную смесь насыщали диоксидом углерода до совпадения показателей преломления стеклянных шариков и водного раствора, которое контролировалось с помощью наблюдения в микроскоп полоски Беке у поверхности раздела шариков и водного раствора или интерферометром по разрыву интерференционных полос на поверхности раздела шариков и водного раствора. Наблюдение за шариками в разных точках объема давало возможность исследовать изменение показателя преломления при нестационарном процессе растворения газа.
Использование в качестве источника растворяющегося газа прозрачной пасты, содержащей прозрачные стеклянные частицы, обеспечивало одновременное изменение концентрации газа в пасте и в жидкости, что расширяло возможности исследования растворения газов в жидкости при нестационарных процессах.
Кроме указанных возможностей предлагаемый способ позволяет исследовать растворение смесей газов и встречные потоки растворяющихся газов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИССЛЕДОВАНИЯ ПРОСТРАНСТВЕННЫХ ДИНАМИЧЕСКИХ ПРОЦЕССОВ В ПРОЗРАЧНЫХ МНОГОФАЗНЫХ ПОРИСТЫХ И ЗЕРНИСТЫХ СРЕДАХ | 2004 |
|
RU2279059C1 |
СПРАВОЧНОЕ УСТРОЙСТВО ДЛЯ РЕФРАКТОМЕТРОВ | 1993 |
|
RU2091760C1 |
СПОСОБ ИЗМЕРЕНИЯ СРЕДНЕЙ ДИСПЕРСИИ СВЕТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2563310C2 |
Способ контроля состояния жидкой текущей среды | 2020 |
|
RU2747962C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ФЛЮИДА В СКВАЖИНЕ | 2004 |
|
RU2361192C2 |
Рефрактометр | 1989 |
|
SU1673925A1 |
РЕФРАКТОМЕТР | 2005 |
|
RU2296981C1 |
Способ определения показателя преломления жидких сред | 1978 |
|
SU868494A1 |
СПОСОБ ЭКСПРЕССНОЙ ОЦЕНКИ КАЧЕСТВА МОТОРНЫХ ТОПЛИВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2532638C2 |
АППАРАТУРА И СПОСОБ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПЛАСТОВОГО ФЛЮИДА | 2003 |
|
RU2318200C2 |
Изобретение относится к оптическим исследованиям процессов массообмена между жидкостью и газом в аппаратах химической, микробиологической, нефтяной промышленности и т.д. Способ включает размещение в жидкости пасты, предварительно насыщенной газом, которая представляет собой прозрачную инертную среду. Показатель преломления пасты, насыщенной газом, равен показателю преломления жидкости, а в пасту добавляют прозрачные частицы с показателем преломления, равным показателю преломления жидкости, материалом которых является стекло, что расширяет возможности измерений концентраций газов при исследовании нестационарных процессов. 2 з.п. ф-лы, 1 табл.
RU 93010871 А, 20.06.1996 | |||
RU 93026481 А, 20.02.1997 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ РАСТВОРИМОСТИ ГАЗОВ В ЖИДКОСТИ | 0 |
|
SU368521A1 |
СПОСОБ ИЗМЕРЕНИЯ РАСТВОРИМОСТИ ГАЗОВ В ЖИДКОСТЯХ | 0 |
|
SU190654A1 |
ЦЕНТРИФУГА | 2004 |
|
RU2252823C1 |
Авторы
Даты
2007-09-20—Публикация
2005-12-26—Подача