СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОЙ МАССЫ Российский патент 2007 года по МПК C04B35/622 

Описание патента на изобретение RU2307110C2

Изобретение относится к области технической керамики и огнеупоров и может быть использовано для изготовления изделий, применяемых в электротехнике, машиностроении, химической и металлургической отраслях промышленности и других отраслях.

Известно применение ультрадисперсных агломерированных порошков оксидов металлов для производства керамики (Галахов А.В., Вязов И.В., Шевченко В.Я. Компактирование и спекание агломерированных ультрадисперсных порошков ZrO2. Огнеупоры, 1989, №9, с.12-16). Недостатком данных порошков является их склонность к агломерированию, что оказывает негативное влияние на уплотнение при компактировании и спекании. Более того, возможность использования дешевого, универсального и широко применяемого метода горячего литья на термопластичном связующем для получения изделий из ультрадисперсных порошков существенно ограничено из-за того, что для обеспечения приемлемых реологических свойств шликеров на их основе требуется большое количество органического связующего.

Ближайшим аналогом, принятым за прототип, является керамическая масса [патент РФ №2233816, С04В 35/622, 2002], которую получают последовательным отжигом и мехактивацией в присутствии поверхностно-активного вещества, в качестве которого использована олеиновая кислота.

Недостатком данной керамической массы является то, что введение олеиновой кислоты требует большого времени механической активации вследствие ее высокой вязкости и относительно высокой температуры предварительного отжига, что приводит к росту размеров кристаллитов в нанопорошке. Это приводит к ухудшению прочностных характеристик получаемой керамики вследствие пониженных технологических свойств плазмохимических порошков.

Задачей предлагаемого изобретения является разработка способа получения керамической массы для производства высокопрочной керамики на основе нанокристаллических порошков оксидов металлов, полученных плазмохимическим методом с малым содержанием органической связки и сохранением наноструктуры порошков при высоких значениях литейной способности.

Для достижения указанного технического результата предлагается способ получения керамической массы для производства высокопрочной керамики на основе нанокристаллических порошков оксида Al и диоксида Zn, полученных плазмохимическим методом, включающий последовательные действия низкотемпературного отжига плазмохимических порошков в течение 1 часа при температуре 800-1000°С, механической активации в течение 25-50 часов в керамических барабанах с керамически активными телами шаровидной и/или цилиндрической формы с добавлением поверхностно-активного вещества хлорида натрия в количестве 0.25-0.5 вес.% и смешивание плазмохимических порошков с органической связкой, причем в качестве органической связки используют парафин 12-15 вес.%, содержащий пчелиный воск 2-3 вес.%.

Кроме того, используют плазмохимические порошки оксида магния, оксида иттрия, оксида кальция, оксида цезия и их смесей.

Возможность реализации изобретения основана на следующем. Известно, что плазмохимические порошки обладают высокой гомогенностью распределения стабилизирующей добавки, имеют средний размер кристаллитов порядка 20 нм [Иванов Ю.Ф. и др. Стабилизация высокотемпературной модификации диоксида циркония. Стекло и керамика, 1991 г., №9, с.22-23] и являются очень перспективными материалами для производства высокопрочной керамики вследствие большой удельной поверхности (до 50 м/г). Однако это обуславливает их низкие технологические свойства. Например, для них характерна нулевая текучесть, низкая насыпная плотность, малая прессуемость. Это также связано с их неблагоприятным для процесса прессования морфологическим строением, при этом их активность к спеканию очень высока, поэтому не удается получить равномерную по всему объему усадку, а следовательно, однородную плотность после спекания. Это также обусловливает необходимость введения большого количества органической связки (до 60%) (Кульков С.Н. и др. Технологические свойства ультрадисперсных плазмохимических порошков. Стекло и керамика, 2001, №1, с.20-22). Поэтому, без предварительной подготовки ультрадисперсных плазмохимических порошков невозможно получение керамической массы на их основе.

Улучшение технологических свойств плазмохимических порошков и уменьшение содержания органической связки в керамической массе авторами достигается тем, что перед смешиванием плазмохимические порошки предварительно подвергают низкотемпературному отжигу, а затем механической активации. Плазмохимические порошки оксидов металлов отжигают на воздухе при температуре 800-1000°С в течение 1 часа, тем самым увеличивается насыпная плотность и, следовательно, снижается содержание количества органической связки в керамической массе. Интервалы температур и времени отжига выбраны экспериментальным путем, исходя из того, что в данных условиях происходит увеличение технологических свойств плазмохимических порошков без изменений в их структуре.

Затем отожженные плазмохимические порошки подвергают механической активации путем размола в шаровой мельнице с добавлением поверхностно-активного вещества, в качестве которого используют хлорид натрия в количестве 0.25-0.5 вес.% в течение 25-50 часов. Хлорид натрия используется как поверхностно-активное вещество, при этом указанного количества достаточно, чтобы покрыть всю поверхность активируемого порошка. Это обусловлено тем, что даже небольшого количества хлорида натрия в водном растворе достаточно, в отличие от олеиновой кислоты, для равномерного покрытия всех частиц нанопорошка. При этом требуется существенно меньше времени механической активации и меньшие температуры предварительного отжига. Это обусловит сохранение наноструктуры порошков и, как следствие, получение компактного материала с более высокими технологическими свойствами, вследствие увеличения литейной способности шликера. Время активации меньше 25 ч недостаточно для необходимого улучшения технологических свойств порошков. Более 50 ч проводить активацию нецелесообразно, т.к. улучшение технологических свойств порошков уже незначительны. В качестве органической связки используют парафин в количестве 12-15 вес.%, содержащий 2-3 вес.% пчелиного воска. Данное количество органической связки в керамической массе позволяет получить максимальную плотность упаковки при удовлетворительных литейных свойствах.

Изобретение осуществляется следующим образом.

Пример 1.

Керамическую массу готовят из плазмохимического порошка Al2О3. Отжиг на воздухе проводят при температуре 1000°С в течение 60 мин. Измерение насыпной плотности после отжига показало, что для порошка Al2О3 она увеличилась на 5%. Затем отожженный порошок механически активируют в шаровой мельнице с добавлением 0.5 вес.% хлорида натрия в течение 25 ч. Определение насыпной плотности порошка, проведенного по ГОСТ 19440-74, установило, что насыпная плотность порошка Al2O3 увеличилась с 0.2 до 0.9 г/см3. К отожженному и активированному плазмохимическому порошку добавляют стандартную органическую связку - парафин ТУ 6-09-3637-87 в количестве 14 вес.%, содержащий 2-3 вес.% пчелиного воска. Смешивание проводят в смесителе, например, типа "Гарт", с подогреваемым резервуаром и снабженным механической мешалкой.

Пример 2.

Керамическую массу готовят из плазмохимического порошка ZrO2, стабилизированного плазмохимическими порошками: 5 вес.% Y2О3, либо 9 вес.% MgO, либо 7 вес.% СаО, либо 12 вес.% СеО. Отжиг на воздухе проводят при температуре 800°С в течение 60 мин. Насыпная плотность стабилизированного плазмохимического порошка ZrO2, прошедшего предварительный отжиг, увеличилась на 10%. Затем отожженные порошки механически активируют в шаровой мельнице с добавлением 0.25 вес.% хлорида натрия в течение 50 ч. Определение насыпной плотности полученных порошков, проведенное по ГОСТ 19440-74, установило, что насыпная плотность стабилизированного плазмохимического порошка ZrO2, прошедшего предварительный отжиг и последующую механическую активацию, увеличилась с 0.3 до 1.5 г/см3. К отожженной и активированной массе плазмохимических порошков добавляют парафин в количестве 13 вес.%. Далее проводят смешивание в смесителе "Гарт".

Пример 3.

Керамическую массу готовят из плазмохимических порошков, содержащих 20 вес.ч. Al2О3 и 80 вес.ч. ZrO2, стабилизированных плазмохимическим порошком 5 вес.% Y2О3. Отжиг на воздухе проводят при температуре 900°С в течение 60 мин. Затем отожженные порошки механически активируют в шаровой мельнице с добавлением 0.5 вес.% хлорида натрия в течение 25 ч. К отожженной и активированной смеси плазмохимических порошков добавляют парафин в количестве 12 вес.% и тщательно перемешивают в смесителе "Гарт".

Полученные предложенным способом керамические массы показали, что совместное действие отжига и последующей механической активации позволяют снизить количество органической связки с 60 вес.% до 12-15 вес.%. При этом литейная способность полученной керамической массы не ниже, чем у стандартных шликеров марки ВК-94-1 или ВК-94-2. Литейная способность стандартных керамических масс марки ВК-94-1, ВК-94-2 и керамических масс, полученных предложенным способом, определенная при общепринятых условиях, а именно при температуре 65°С и давлении 2 атм, представлена в таблице.

ТаблицаКерамическая массаЛитейная способность, мм (при 65°С и давлении 2 атм)Относительная плотность, %ВК-94-13288Al2O3 (по прототипу)8292Al2О3 (по предлагаемому способу)9296ZrO2 (Y2O3) по прототипу7594ZrO2 (Y2О3) по предлагаемому способу9597ZrO2(Y2O3)-Al2O3 по прототипу7991ZrO2 (Y2O3)-Al2O3 по предлагаемому способу10298

Как видно из примеров, свойства полученной керамической массы по предлагаемому способу выше, чем у аналогов, и плотность спеченной керамики достигает плотности компактного материала.

Похожие патенты RU2307110C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОЙ МАССЫ 2002
  • Андриец С.П.
  • Дедов Н.В.
  • Кульков С.Н.
  • Мельников А.Г.
  • Рыжова Л.Н.
RU2233816C2
ТВЕРДЫЙ ЭЛЕКТРОЛИТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Жуков Александр Степанович
  • Домрачева Светлана Алексеевна
  • Бланк Валерий Арнольдович
RU2284975C2
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО ШЛИКЕРА 2013
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
  • Зинкин Алексей Игоревич
RU2531960C1
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2007
  • Бабиевская Ирина Зиновьевна
  • Гавричев Константин Сергеевич
  • Дергачева Нина Петровна
  • Дробот Наталия Федоровна
  • Ермаков Владимир Анатольевич
  • Изотов Александр Дмитриевич
  • Кренев Владимир Александрович
  • Кузнецов Николай Тимофеевич
  • Новоторцев Владимир Михайлович
  • Рюриков Вадим Федорович
RU2342344C2
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ ВЫСОКОПРОЧНОЙ КЕРАМИКИ 2016
  • Дедов Николай Владимирович
  • Жиганов Александр Николаевич
  • Точилин Сергей Борисович
  • Русаков Игорь Юрьевич
RU2626866C1
Способ изготовления керамических пьезоматериалов из нано- или ультрадисперсных порошков фаз кислородно-октаэдрического типа 2018
  • Нестеров Алексей Анатольевич
  • Панич Евгений Анатольевич
RU2702188C1
Способ изготовления керамических пьезоматериалов из нано- или ультрадисперсных порошков фаз кислородно-октаэдрического типа 2015
  • Нестеров Алексей Анатольевич
  • Панич Анатолий Евгеньевич
  • Панич Александр Анатольевич
  • Нагаенко Александр Владимирович
RU2612174C1
СПОСОБ ЛЕГИРОВАНИЯ АЛЮМООКСИДНОЙ КЕРАМИКИ 2013
  • Детков Пётр Яковлевич
  • Мякин Валентин Кириллович
  • Петров Игорь Леонидович
RU2525889C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОЧНОЙ КЕРАМИКИ 2004
  • Мельников Александр Григорьевич
  • Савченко Николай Леонидович
  • Саблина Татьяна Юрьевна
  • Кульков Сергей Николаевич
RU2286316C2
СПОСОБ 3D-ПЕЧАТИ ИЗДЕЛИЙ АКТИВИРОВАННОЙ УЛЬТРАЗВУКОМ СТРУЕЙ ПОРОШКОВОГО МАТЕРИАЛА, ПЛАСТИФИЦИРОВАННОГО ТЕРМОПЛАСТИЧНОЙ СВЯЗКОЙ 2021
  • Ситников Сергей Анатольевич
  • Рабинский Лев Наумович
  • Кравцов Дмитрий Александрович
RU2777114C1

Реферат патента 2007 года СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОЙ МАССЫ

Изобретение относится к области технической керамики и огнеупоров и может быть использовано для изготовления изделий, применяемых в электротехнике, машиностроении, химической, металлургической и других отраслях промышленности. Способ получения керамической массы включает низкотемпературный отжиг плазмохимических порошков оксидов металлов при температуре 800-1000°С в течение 1 часа, механическую активацию путем размола в течение 25-50 ч в шаровой мельнице с добавлением 0,25-0,5 мас.% хлорида натрия в виде водного раствора в качестве поверхностно-активного вещества, смешивание плазмохимических порошков оксидов металлов и органической связки - 12-15 вес.% парафина, содержащего 2-3 вес.% пчелиного воска. Используют плазмохимические порошки оксидов алюминия, магния, иттрия, кальция, церия, диоксида циркония и их смесей. Изобретение позволяет получить керамическую массу на основе ультрадисперсных плазмохимических порошков оксидов металлов с пониженным содержанием органической связки и сохранением структуры нанопорошков при высоких значениях литейной способности. 1 табл.

Формула изобретения RU 2 307 110 C2

Способ получения керамической массы на основе нанокристаллических порошков оксидов металлов, полученных плазмохимическим методом, включающий последовательные действия низкотемпературного отжига в течение 1 ч при температуре 800-1000°С, механической активации с добавлением поверхностно-активного вещества и смешивания порошков с органической связкой, отличающийся тем, что механическую активацию осуществляют с добавлением хлорида натрия в количестве 0,25-0,5 вес.% в течение 25-50 ч, а в качестве органической связки используют парафин 12-15 вес.%, содержащий 2-3 вес.% пчелиного воска.

Документы, цитированные в отчете о поиске Патент 2007 года RU2307110C2

СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОЙ МАССЫ 2002
  • Андриец С.П.
  • Дедов Н.В.
  • Кульков С.Н.
  • Мельников А.Г.
  • Рыжова Л.Н.
RU2233816C2
RU 2003124941 А, 10.03.2005
Формирователь импульсов 1986
  • Колеватов Сергей Александрович
  • Костромитинов Валерий Геннадьевич
  • Петров Сергей Валентинович
SU1319258A1
DE 19703032 A, 27.08.1998
СЛОСМАН А.И
и др
Влияние предварительной обработки на технологические свойства плазмохимических оксидных порошков
Огнеупоры, 1994, № 2, с.4-7
СТРЕЛОВ К.К
и др
Технология огнеупоров
- М.: Металлургия, 1988, с.49-50, 105.

RU 2 307 110 C2

Авторы

Жуков Александр Степанович

Кульков Сергей Николаевич

Даты

2007-09-27Публикация

2005-07-22Подача