Изобретение относится к процессам некаталитической очистки дымовых газов от оксидов азота (NOx) и может быть использовано для снижения содержания NOx в низкотемпературных дымовых газах от топливоиспользующих установок.
Известно, что восстановителями для процесса селективного некаталитического восстановления NOx могут служить карбамид, аммиак, соли аммония, изоциановая кислота и другие аминосодержащие соединения (US №3,900,554, US №4,208,386).
Из большого числа возможных восстановителей NOx практическое значение имеют аммиак и карбамид, причем карбамид является более предпочтительным с точки зрения экологической безопасности процесса.
Оптимальная температура процесса некаталитической очистки газов с использованием карбамида находится в достаточно узком диапазоне (900-1000°С) (US №4,208,386).
Существует ряд тепловых агрегатов, в которых зона камеры сгорания, где температура дымовых газов оптимальна для процесса некаталитической очистки, недоступна для ввода восстановителя. Это двигатели внутреннего сгорания, дизельные двигатели, газотурбинные и газомоторные установки, технологические печи. Известно также, что в процессе эксплуатации тепловых агрегатов происходят значительные колебания тепловой нагрузки. В случае снижения температуры дымовых газов в зоне ввода восстановителя снижается эффективность процесса некаталитической очистки дымовых газов от оксидов азота.
Для решения этой проблемы используют добавки к восстановителю, снижающие температуру процесса восстановления NOx, например кислородсодержащие органические соединения: альдегиды, кетоны, этиленгликоль и др. (US №4,719,092), гуанидин, меламин, фурфурол, цианамид кальция, метилфенолы и др. (US №4,751,065, US №4,770,863, US №4,927,612), а также ввод восстановителя в топку теплового агрегата на нескольких уровнях (US №4,777,024, US №4,863,704, US №5,057,293).
Однако ввод вышеуказанных добавок, снижающих температуру процесса восстановления NOx, как правило, не обеспечивает достаточной эффективности процесса очистки при пониженных температурах, а ввод восстановителя на нескольких уровнях усложняет технологический процесс.
Наиболее близким по технической сущности к изобретению является способ селективной некаталитической очистки дымовых газов в области низких температур от NOx с использованием карбамида и различных кислородсодержащих добавок - окислителей (US №4,119,702, 10.10.1978), согласно которому окислитель в смеси с водным раствором карбамида вводится в поток очищаемых дымовых газов.
В качестве окислителей используют озон, азотную кислоту, пероксид водорода, диоксид хлора (ClO2), хлорную кислоту, хлорноватокислый натрий, гипохлорит натрия и т.д.
Использование окислителей в качестве добавок к водному раствору карбамида позволяет проводить процесс селективного восстановления оксидов азота в диапазоне температур 200-800°С.
Недостатками данного способа являются возможность образования опасных вторичных загрязнителей в процессе очистки газов от оксидов азота с использованием хлорсодержащих окислителей и низкая степень очистки газов от оксидов азота при использовании в качестве окислителя озона или пероксида водорода. Согласно приведенным в указанном патенте примерам конкретного осуществления способа степень очистки газов от NOx в диапазоне температур 400-700°С составляет 3-15% при использовании в качестве добавки пероксида водорода и 0-30% - при использовании озона.
Задачей настоящего изобретения является повышение эффективности очистки дымовых газов от NOx при низких температурах (200-700°С) без образования вторичных загрязнителей.
Поставленная задача решается способом селективной некаталитической очистки дымовых газов от оксидов азота, включающим подачу в газоход топливосжигающего агрегата с температурой потока отходящих дымовых газов 200-700°С газообразной восстановительной смеси, предварительно полученной совместным термическим разложением карбамида и пероксида водорода при температуре 150-500°С, причем для получения газообразной восстановительной смеси используют либо водные растворы пероксигидрата мочевины или карбамида и пероксида водорода, либо пероксигидрат мочевины в твердом виде.
Задача решается также тем, что для получения газообразной восстановительной смеси используют водные растворы карбамида и пероксида водорода следующих концентраций: карбамида - 1-40 мас.%, пероксида водорода - 0,5-20 мас.%.
А также тем, что газообразную восстановительную смесь подают в поток дымовых газов, имеющих преимущественно температуру 300-600°С.
Задача решается также тем, что восстановительную газовую смесь подают с помощью газа-носителя, в качестве которого используют водяной пар, дымовые газы, сжатый воздух, азот.
Сущность заявленного изобретения заключается в следующем.
Для приготовления газообразной восстановительной смеси используют мочевину и пероксид водорода. Эти компоненты могут быть использованы либо в виде смеси их водных растворов, либо в виде водного раствора пероксигидрата мочевины, имеющую формулу (СО(NH2)2·H2O2) (ТУ 6-00-04691277-186-97), либо в виде исходного (твердого) пероксигидрата мочевины.
Исходный карбамид и пероксид водорода (в виде либо твердого пероксигидрата мочевины, либо его водного раствора, либо смеси водных растворов карбамида и пероксида водорода) переводят в газообразную форму путем их термического разложения при температуре 150-500°С. При использовании водных растворов мочевины и H2O2 их исходная концентрация составляет, соответственно, 1-40 мас.% и 0,5-20 мас.%. Полученную газовую восстановительную смесь либо непосредственно, либо с помощью газа-носителя (в качестве которого могут быть использованы водяной пар, дымовые газы, сжатый воздух, азот) вводят в поток очищаемых дымовых газов с температурой 200-700°С в количестве, достаточном для восстановления содержащихся в них оксидов азота.
Ниже приведены примеры очистки газов от оксидов азота, иллюстрирующие изобретение, не ограничивая его.
Пример 1.
В кварцевый реактор диаметром 20 мм, помещенный в электрическую печь, непрерывно подавали со скоростью 180 л/час исходную смесь газов, содержащую азот, кислород и оксид азота (NO). Содержание кислорода в данной смеси 6.5 об.%, содержание оксида азота указано в таблице, остальное - азот.
В реактор в поток очищаемого газа непрерывно подавали с помощью водяного пара (в качестве газа-носителя) восстановительную газовую смесь, предварительно полученную термическим разложением смеси 1%-ного водного раствора карбамида и 0,5%-ного водного раствора пероксида водорода, взятых в соотношении 1:1, при температуре 300°С. Расход смеси растворов составлял 20 мл/час. Результаты экспериментов приведены в таблице 1.
Пример 2.
В реактор в поток очищаемой газовой смеси подавали восстановительную газовую смесь, полученную в результате термического разложения пероксигидрата мочевины (в виде 1,5 мас.% водного раствора) при температуре 150°С. Расход раствора 20 мл/час. Остальные условия эксперимента аналогичны охарактеризованным в примере 1. Результаты экспериментов приведены в таблице 2.
Пример 3.
Состав и расход исходной газовой смеси аналогичны приведенным в примере 1.
К исходной смеси газов в реактор добавляют восстановительную газовую смесь, полученную в результате термического разложения твердого пероксигидрата мочевины при температуре 180°С. Расход пероксигидрата мочевины составляет 0,2 г/ч. Результаты экспериментов приведены в таблице 3.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ НЕКАТАЛИТИЧЕСКОЙ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 2009 |
|
RU2403081C1 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 2009 |
|
RU2411065C1 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 2004 |
|
RU2271856C2 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 2004 |
|
RU2286839C2 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 1994 |
|
RU2081685C1 |
СПОСОБ ОЧИСТКИ ПРОДУКТОВ СГОРАНИЯ ОТ NO И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2040737C1 |
СПОСОБ СОЗДАНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОЙ И БЕЗОТХОДНОЙ УГОЛЬНОЙ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ С КОМПЛЕКСНОЙ НЕКАТАЛИТИЧЕСКОЙ ОЧИСТКОЙ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА И С ОТБОРОМ ЛЕТУЧЕЙ ЗОЛЫ, ЕЕ ИЗМЕЛЬЧЕНИЕМ, ДОЖИГАНИЕМ СВОБОДНОГО УГЛЕРОДА, ФРАКЦИОНИРОВАНИЕМ И ПОЛНОЙ УТИЛИЗАЦИЕЙ | 2011 |
|
RU2472571C1 |
СПОСОБ ВЫСОКОТЕМПЕРАТУРНОЙ НЕКАТАЛИТИЧЕСКОЙ ОЧИСТКИ ОТ ОКСИДОВ АЗОТА ПРОДУКТОВ СГОРАНИЯ С МНОГОЗОННЫМ ВВОДОМ В НИХ ВОССТАНОВИТЕЛЯ | 2013 |
|
RU2550864C2 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ТОКСИЧНЫХ ПРОДУКТОВ СГОРАНИЯ ТОПЛИВА | 1994 |
|
RU2102122C1 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 1997 |
|
RU2113890C1 |
Изобретение относится к процессам селективной некаталитической очистки дымовых газов от оксидов азота и может быть использовано для снижения содержания оксидов азота в низкотемпературных дымовых газах от топливосжигающих установок. Способ селективной некаталитической очистки дымовых газов от оксидов азота включает подачу в поток отходящих дымовых газов с температурой 200-700°С газообразной восстановительной смеси, предварительно полученной совместным термическим разложением карбамида и пероксида водорода при температуре 150-500°С. Для получения газообразной восстановительной смеси используют либо водные растворы пероксигидрата мочевины или карбамида и пероксида водорода, либо пероксигидрат мочевины в твердом виде. Восстановительную газовую смесь подают с помощью газа-носителя, в качестве которого используют водяной пар, дымовые газы, сжатый воздух, азот. Концентрация водных растворов карбамида и пероксида водорода составляет 1-40 мас.% и 0,5-20 мас.%. Результат изобретения: повышение эффективности очистки дымовых газов от оксидов азота при низких температурах без образования вторичных загрязнителей. 3 з.п. ф-лы, 3 табл.
US 4119702 А, 10.10.1978 | |||
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 2004 |
|
RU2271856C2 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 1994 |
|
RU2081685C1 |
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА | 1997 |
|
RU2113890C1 |
JP 10211417 А, 11.08.1998. |
Авторы
Даты
2008-01-20—Публикация
2006-07-10—Подача