СПОСОБ ВЫСОКОТЕМПЕРАТУРНОЙ НЕКАТАЛИТИЧЕСКОЙ ОЧИСТКИ ОТ ОКСИДОВ АЗОТА ПРОДУКТОВ СГОРАНИЯ С МНОГОЗОННЫМ ВВОДОМ В НИХ ВОССТАНОВИТЕЛЯ Российский патент 2015 года по МПК B01D53/34 

Описание патента на изобретение RU2550864C2

Область использования

Изобретение относится к высокотемпературной очистке продуктов сгорания всех видов органического топлива от оксидов азота (NOx) путем их селективного некаталитического восстановления (СНКВ) и может быть использовано для уменьшения выброса NOx в атмосферу с дымовыми газами тепловых агрегатов различного назначения, преимущественно паровых котлов тепловых электростанций.

Уровень техники

Очистка дымовых газов путем СНКВ проводится обычно вводом в газы аммиаксодержащего восстановителя. Известны способы высокотемпературной очистки продуктов сгорания от оксидов азота путем их СНКВ (US 4208386, B01D 53/56, 1980; US 4325924, B01D 53/56, 1982 [1]), использующие в качестве восстановителя карбамид. При этом температурный интервал газового потока, в зону которого вводят восстановитель, составляет 1900…2500°F (1000…1350°C). Недостатком указанных способов является низкая эффективность процесса очистки газового потока из-за существенной температурной зависимости эффективности восстановления оксидов азота внутри указанного интервала. Кроме того, снижение или повышение температуры внутри указанного интервала относительно оптимальной приводит и к увеличению свыше допустимых пределов содержания в очищенных газах вторичного загрязнителя - аммиака. Дело в том, что в процессе эксплуатации тепловых агрегатов происходят значительные колебания их тепловой нагрузки, а следовательно, и температуры очищаемого газового потока. В случае снижения температуры газового потока в зоне ввода восстановителя снижается эффективность процесса СНКВ. Для решения этой проблемы используют добавки к восстановителю, снижающие температуру процесса восстановления NOx, например, кислородсодержащие органические соединения: альдегиды, кетоны, этиленгликоль (US 4719092, B01D 53/56 [2]) или водородсодержащие неорганические соединения: гуанидин, меламин и другие (US 4751065; US 4770863; US 4927612; US 4119702 (все - B01D 53/56) [3]). Однако ввод указанных добавок, снижающих температуру хода эффективного процесса восстановления NOx, тем не менее, не обеспечивает достаточной эффективности процесса очистки при колебаниях нагрузки тепловых агрегатов, а в ряде случаев приводит к образованию вторичных загрязнителей.

Известен принятый в качестве прототипа изобретения способ высокотемпературной очистки продуктов сгорания в газоходе теплового агрегата от оксидов азота путем их селективного некаталитического восстановления, заключающийся в том, что в ограниченные температурным диапазоном 850…1100°C выбранные зоны газохода между расположенными в нем поверхностями нагрева вводят аммиаксодержащий восстановитель (Zellinger G., Tauschitz J. Betrieb-serfahrungen mit der nichtkatalytischen Stickstoffoxidreduktion in den Dampfkraftwerken der Osterreichischen Draukraftwerke AG // VGB Kraftwerkstechnik, 1989, Bd. 69, H. 12, S.1194-2000 [4]). Согласно [4] каждая из указанных зон предназначена для работы при определенной тепловой нагрузке агрегата, при которой температура дымовых газов наиболее близка к оптимальной для СНКВ. Недостатками такого технического решения являются сложность регулировочного процесса выбора рабочей зоны с переключением работы соответствующего оборудования, а также возможность загрязнения дымовых газов аммиаком из-за необходимости работы с максимально высоким коэффициентом расхода восстановителя по отношению к его стехиометрическому значению.

Раскрытие изобретения

Задачей изобретения является повышение эффективности очистки дымовых газов от оксидов азота при исключении выброса в атмосферу вторичного загрязнителя в виде избытка восстановителя, а техническим результатом - обеспечение максимальной степени восстановления NOx без превышения стехиометрического соотношения расхода восстановителя.

Решение указанной задачи и достижение указанного технического результата обеспечиваются тем, что при осуществлении способа высокотемпературной очистки продуктов сгорания в газоходе теплового агрегата от оксидов азота путем их СНКВ, заключающегося в том, что в ограниченные температурным диапазоном 850…1100°C выбранные зоны газохода между расположенными в нем поверхностями нагрева вводят аммиаксодержащий восстановитель согласно изобретению восстановитель вводят одновременно во все указанные выбранные зоны, причем в каждую из этих зон его подают с коэффициентом расхода по отношению к стехиометрическому расходу, меньшим единицы. При этом число зон ввода восстановителя преимущественно составляет 2…5; коэффициент расхода восстановителя, подаваемого в каждую зону очистки, устанавливают в диапазоне 0,2…0,8; в качестве восстановителя используют аммиак или карбамид.

Причинно-следственная связь между указанным техническим результатом и отличительными признаками изобретения состоит в следующем. Известно, что оптимальная температура, соответствующая максимальной степени восстановления оксидов азота с использованием в качестве восстановителя аммиаксодержащего соединения, находится в диапазоне 900…1000°C, тогда как практический температурный диапазон продуктов сгорания в возможной области их обработки более широк и составляет 850…1100°C. Этот температурный диапазон имеет место практически во всех тепловых агрегатах при работе на различных нагрузках. Но целесообразно осуществлять ввод восстановителя не в одной узкой температурной зоне с оптимальными условиями для восстановительного процесса, а во всем возможном температурном диапазоне, в котором может протекать СНКВ-процесс.

Эффективность очистки газов в каждой зоне при многозонном вводе восстановителя может быть меньше по сравнению с эффективностью однозонной схемы ввода. Это объясняется тем, что температура дымовых газов в каждой зоне ввода восстановителя различна и может отличаться от оптимальной температуры процесса. Однако суммарная эффективность многозонной схемы очистки будет выше по сравнению с однозонной. Это связано с тем, что увеличивается протяженность пути газов, на котором в них происходит процесс восстановления, а также увеличивается время реакции для данного объема газов. Кроме того, при реализации многозонного ввода восстановителя сокращается количество выброса вторичного загрязнителя также за счет увеличения объема и времени реакции.

Восстановитель подается в каждую зону очистки с коэффициентом расхода (отношение действительного расхода восстановителя к стехиометрически необходимому) меньшим единицы. При этом общее количество подаваемого восстановителя должно быть достаточным для восстановления оксидов азота (не менее стехиометрически необходимого количества), содержащихся в дымовых газах.

Краткое описание чертежа

На чертеже представлена принципиальная технологическая схема одного из возможных примеров реализации способа высокотемпературной очистки продуктов сгорания от оксидов азота согласно изобретению.

Подробное описание изобретения

Способ согласно изобретению иллюстрируется примером представленной на чертеже принципиальной технологической схемы. На участке газохода 1 теплового агрегата, в рассматриваемых ниже примерах - пылеугольного энергетического парового котла, с начальной температурой газов на этом участке приблизительно 1100°C, установлены поверхности нагрева, в том числе первый ширмовый пароперегреватель (ШПП) 2, вторая ступень 3 второго ШПП и первая ступень 4 второго ШПП, за которым продукты сгорания органического топлива охлаждаются до температуры 850°C. Для высокотемпературной очистки продуктов сгорания от содержащихся в них оксидов азота в свободном от поверхностей нагрева 2-4 пространстве газохода 1 выбраны три температурные зоны А, В, С, для ввода в которые восстановителя предусмотрена арматура соответственно 5-8. Восстановитель в чистом виде (аммиак, карбамид) или в смеси с водяным паром в качестве носителя одновременно вводят в начальные участки всех указанных зон с помощью арматуры 5-8, при этом коэффициент расхода восстановителя, подаваемого в каждую зону очистки, устанавливают в диапазоне 0,2…0,8. При смешении восстановителя с продуктами сгорания происходит реакция восстановления оксидов азота. Результаты опытной проверки указанной технологической схемы приведены ниже для четырех различных примеров. В первых двух примерах используется только одна зона, в двух последующих - три. Содержание оксидов азота и аммиака после очистки измерялось в охлажденных продуктах сгорания (дымовых газах) на выходе из котла перед их выбросом в дымовую трубу.

Пример 1. Расход очищаемых газов через газоход 1 составлял 1100000 нм3/ч. При стопроцентной нагрузке в зону B газохода 1, расположенную в рассечке между ступенями 3, 4 второго ШПП, подавали предварительно полученную с использованием 40%-го раствора карбамида парогазовую восстановительную смесь. Температура продуктов сгорания в этой зоне составляла в среднем 1006°C. Коэффициент расхода карбамида был равен 1. Результаты испытаний приведены в таблице 1.

Таблица 1 NN Расход карбамида, л/ч Содержание NOx в дымовых газах после очистки, мг/м3 Степень очистки, % Содержание NH3 в дымовых газах, мг/м3 1. 0 1080 0 0 2. 1930 490 55 35 3. 1900 540 50 27 4. 1850 530 51 20

Пример 2. Объем очищаемых газов 800000 нм3/ч. При нагрузке 70% в высокотемпературную зону котла, расположенную в зоне В, подавали предварительно полученную с использованием 40%-го раствора карбамида парогазовую восстановительную смесь. Температура продуктов сгорания в этой зоне составляла в среднем 860°C. Коэффициент расхода карбамида был равен 1. Результаты испытаний приведены в таблице 2.

Таблица 2 NN Расход карбамида, л/ч Содержание NOx в дымовых газах после очистки, мг/м3 Степень очистки, % Содержание NH3 в дымовых газах, мг/м3 1. 0 850 0 0 2. 1100 620 27 38 3. 1120 630 26 45 4. 1080 645 24 33

Пример 3. При стопроцентной нагрузке восстановительная смесь подавалась одновременно в три зоны А, В, С очистки. Температура продуктов сгорания в первой зоне A составляла в среднем 1049°C, во второй зоне B - в среднем 1006°C, в третьей зоне C - в среднем 963°C. Коэффициент расхода карбамида в каждой зоне очистки составлял от 0,2 до 0,5. Остальные условия испытаний аналогичны приведенным в примере 1. Результаты испытаний приведены в таблице 3.

Таблица 3 NN Расход карбамида, л/ч Содержание NOx в дымовых газах после очистки, мг/м3 Степень очистки, % Содержание NH3 в дымовых газах, мг/м3 Зона А Зона В Зона С 1. 0 0 0 1080 0 0 2. 390 980 570 240 78 3 3. 390 770 770 260 76 5 4. 580 390 770 300 72 2

Пример 4. При нагрузке 70% восстановительная смесь подавалась одновременно в три зоны А, В, С очистки. Температура продуктов сгорания в зоне A составляла в среднем 1045°C, в зоне B - в среднем - 933°C, в зоне C - в среднем 890°C. Коэффициент расхода карбамида в каждой зоне очистки составлял от 0,2 до 0,6. Остальные условия испытаний аналогичны приведенным в примере 1. Результаты испытаний приведены в таблице 4.

Таблица 4 NN Расход карбамид, л/ч Содержание NOx в дымовых газах после очистки, мг/м3 Степень очистки, % Содержание NH3 в дымовых газах, мг/м3 Зона A Зона B Зона C 1. 0 0 0 850 0 0 2. 330 550 220 240 72 3 3. 220 650 770 220 74 2 4. 220 550 330 215 75 3

Анализ приведенных в таблицах 1-4 результатов очистки отходящих продуктов сгорания от оксидов азота показал значительное повышение степени очистки газов при многоступенчатом вводе восстановителя по сравнению с одноступенчатым, существенное снижение содержания аммиака в очищенных дымовых газах, а также стабильно высокую степень очистки газов при изменении нагрузки котла.

Похожие патенты RU2550864C2

название год авторы номер документа
СПОСОБ НЕКАТАЛИТИЧЕСКОЙ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 2009
  • Кулиш Ольга Николаевна
  • Кужеватов Сергей Александрович
  • Орлова Марина Николаевна
  • Глейзер Илья Шулимович
  • Вощинский Аркадий
  • Мендельсон Гад
RU2403081C1
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 2004
  • Кулиш Ольга Николаевна
  • Кужеватов Сергей Александрович
  • Глейзер Илья Шулимович
  • Бородина Елена Владимировна
RU2271856C2
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 1994
  • Кулиш О.Н.
  • Заслонко И.С.
  • Караваев М.М.
  • Пихтовников Б.И.
  • Жданов И.Х.
RU2081685C1
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 2009
  • Кулиш Ольга Николаевна
  • Кужеватов Сергей Александрович
  • Орлова Марина Николаевна
  • Курбатов Юрий Федорович
  • Фарина Николай Александрович
  • Иванова Екатерина Владимировна
RU2411065C1
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 2004
  • Кулиш Ольга Николаевна
  • Кужеватов Сергей Александрович
  • Куценко Елена Валентиновна
  • Глейзер Илья Шулимович
  • Сенявин Владимир Маркович
RU2286839C2
СПОСОБ СЕЛЕКТИВНОЙ НЕКАТАЛИТИЧЕСКОЙ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 2006
  • Кулиш Ольга Николаевна
  • Кужеватов Сергей Александрович
  • Ребров Александр Игоревич
  • Орлова Марина Николаевна
  • Антипова Наталья Васильевна
RU2314861C1
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ТОКСИЧНЫХ ПРОДУКТОВ СГОРАНИЯ ТОПЛИВА 1994
  • Кулиш О.Н.
  • Кужеватов С.А.
  • Пихтовников Б.И.
  • Кузнецова М.Н.
RU2102122C1
СПОСОБ ОЧИСТКИ ПРОДУКТОВ СГОРАНИЯ ОТ NO И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Кулиш О.Н.
  • Кужеватов С.А.
  • Славин С.И.
  • Глейзер И.Ш.
  • Сидоров А.Л.
  • Преснов Г.В.
  • Ежов В.З.
  • Никулинский А.Я.
  • Дугинова Т.Л.
RU2040737C1
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 1997
  • Кулиш О.Н.
  • Кужеватов С.А.
  • Зайцева Т.В.
  • Герасимова В.П.
  • Гладкая Н.Г.
  • Акопова Г.С.
RU2113890C1
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКИСЛОВ АЗОТА И СЕРЫ 1991
  • Бурлов В.Ю.
  • Желдаков Д.Ю.
  • Кулиш О.Н.
  • Медведев В.И.
  • Наздрюхина Г.В.
  • Никитина Л.М.
  • Охотин В.Н.
  • Тартаковская Н.А.
RU2008079C1

Иллюстрации к изобретению RU 2 550 864 C2

Реферат патента 2015 года СПОСОБ ВЫСОКОТЕМПЕРАТУРНОЙ НЕКАТАЛИТИЧЕСКОЙ ОЧИСТКИ ОТ ОКСИДОВ АЗОТА ПРОДУКТОВ СГОРАНИЯ С МНОГОЗОННЫМ ВВОДОМ В НИХ ВОССТАНОВИТЕЛЯ

Изобретение относится к высокотемпературной очистке продуктов сгорания всех видов органического топлива от оксидов азота (NOx) путем их селективного некаталитического восстановления (СНКВ). Способ высокотемпературной очистки продуктов сгорания в газоходе теплового агрегата от оксидов азота путем их СНКВ, заключающийся в том, что в ограниченные температурным диапазоном 850 - 1100°C выбранные зоны газохода между расположенными в нем поверхностями нагрева вводят аммиаксодержащий восстановитель. Отличие: восстановитель вводят одновременно во все указанные выбранные зоны, причем в каждую из этих зон его подают с коэффициентом расхода по отношению к стехиометрическому расходу меньшим единицы. Число зон ввода преимущественно восстановителя составляет 2 - 5. Коэффициент расхода восстановителя, подаваемого в каждую зону очистки, устанавливают преимущественно в диапазоне 0,2-0,8. В качестве восстановителя преимущественно используют аммиак или карбамид. Технический результат изобретения - обеспечение максимальной степени восстановления NOx без превышения стехиометрического соотношения расхода восстановителя. 4 з. п. ф-лы, 1 ил., 4 табл.

Формула изобретения RU 2 550 864 C2

1. Способ высокотемпературной очистки продуктов сгорания в газоходе теплового агрегата от оксидов азота путем их селективного некаталитического восстановления, заключающийся в том, что в ограниченные температурным диапазоном 850-1100°C выбранные зоны газохода между расположенными в нем поверхностями нагрева вводят аммиаксодержащий восстановитель, отличающийся тем, что восстановитель вводят одновременно во все указанные выбранные зоны, причем в каждую из этих зон его подают с коэффициентом расхода по отношению к стехиометрическому расходу, меньшим единицы.

2. Способ по п.1, отличающийся тем, что число зон ввода восстановителя составляет 2-5.

3. Способ по п.1 или 2, отличающийся тем, что коэффициент расхода восстановителя, подаваемого в каждую зону очистки, устанавливают в диапазоне 0,2-0,8.

4. Способ по п.1 или 2, отличающийся тем, что в качестве восстановителя используют аммиак или карбамид.

5. Способ по п.3, отличающийся тем, что в качестве восстановителя используют аммиак или карбамид.

Документы, цитированные в отчете о поиске Патент 2015 года RU2550864C2

US 4777024 A, 11.10.1988
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 1997
  • Кулиш О.Н.
  • Кужеватов С.А.
  • Зайцева Т.В.
  • Герасимова В.П.
  • Гладкая Н.Г.
  • Акопова Г.С.
RU2113890C1
СПОСОБ НЕКАТАЛИТИЧЕСКОЙ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 2009
  • Кулиш Ольга Николаевна
  • Кужеватов Сергей Александрович
  • Орлова Марина Николаевна
  • Глейзер Илья Шулимович
  • Вощинский Аркадий
  • Мендельсон Гад
RU2403081C1
СПОСОБ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ОКСИДОВ АЗОТА 2004
  • Кулиш Ольга Николаевна
  • Кужеватов Сергей Александрович
  • Глейзер Илья Шулимович
  • Бородина Елена Владимировна
RU2271856C2

RU 2 550 864 C2

Авторы

Кулиш Ольга Николаевна

Кужеватов Сергей Александрович

Глейзер Илья Шулимович

Брагина Ольга Назаровна

Зыков Александр Максимович

Орлова Марина Николаевна

Иванова Екатерина Владимировна

Аничков Сергей Николаевич

Торхунов Сергей Федорович

Даты

2015-05-20Публикация

2013-09-27Подача