РАБОЧИЙ ЭЛЕКТРОЛИТ ДЛЯ ОПРЕДЕЛЕНИЯ КАПИЛЛЯРНЫМ ЭЛЕКТРОФОРЕЗОМ ИОННОГО СОСТАВА ЖИДКИХ СРЕД Российский патент 2008 года по МПК G01N33/18 G01N33/14 G01N27/447 

Описание патента на изобретение RU2315299C1

Изобретение относится к пищевой, ликероводочной промышленности, биотехнологии, производству безалкогольных напитков и может найти применение для определения ионного состава жидких сред - содержания катионов, аминов, анионов неорганических и органических кислот в водных и водно-спиртовых растворах (в водах, сырье, промежуточных и целевых продуктах биотехнологии, ликероводочной промышленности, производстве безалкогольных напитков и безалкогольных напитков брожения).

Природное сырье для проведения биотехнологических процессов, производства алкогольных, слабоалкогольных и безалкогольных напитков, промежуточные и целевые продукты этих процессов отличаются многокомпонентностью состава, совместным присутствием в них сложных смесей химических соединений, в том числе сложным ионным составом - содержанием катионов, аминов, анионов неорганических и органических кислот. Одновременное определение содержания соединений разнообразной химической природы, находящихся в анализируемой жидкости, вызывает затруднения и требует поиска универсальных приемов, применимых при анализе различных жидкостей сложного химического состава, характерных для биотехнологических процессов. Задача усложняется также тем, что биотехнологические процессы могут осуществляться не только в водной, но и в водно-спиртовой среде, что требует разработки универсальных составов рабочих электролитов, применимых для анализа ионного состава разных жидких сред.

Для определения катионов, аминов, анионов неорганических и органических кислот применяют способы, в основе которых лежит капиллярное электролитическое разделение определяемых компонентов с использованием рабочих электролитов разнообразных составов.

Так, известен рабочий электролит для определения капиллярным электрофорезом ионного состава жидкости, содержащий 2-циклогексиламиноэтансульфоновую кислоту, гидроксид лития, Тритон Х-100 и воду (Haber С. et all. J. Cap. Elec., 1996, №3, p.1) /1/.

Данный известный рабочий электролит позволяет определять капиллярным электрофорезом только анионы неорганических и органических кислот и только в водных средах. Его не используют для анализа ионного состава водно-спиртовых сред, а также не используют для определения катионов и аминов в жидких средах. При работе с этим известным рабочим электролитом перед каждым анализом капилляр необходимо обрабатывать раствором бромида гексадецилтриметиламмония, что усложняет анализ, приводит к излишним расходам реактива и избыточным трудозатратам.

Известен рабочий электролит, который позволяет определять капиллярным электрофорезом только катионы и амины в водных средах. Этот известный рабочий электролит содержит 20 мМоль/л гистидина, 20 мМоль/л 2-морфолиноэтансульфоновой кислоты и 1 мМоль/л Краун-эфира, вода - остальное (Mayrhofer К. et all. Anal. Chem., 1999, 71, 3828-3833) /2/.

Однако данный известный рабочий электролит не применяется для анализа водно-спиртовых сред, а также для определения анионов органических и неорганических кислот в жидких средах.

Наиболее близким аналогом заявляемого рабочего электролита является известный рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред, содержащий 50 мМоль/л гистидина, 50 мМоль/л 2-морфолиноэтансульфоновой кислоты и 1 мМоль/л Краун-эфира, вода - остальное (Unterhoizner V.: Analyst., 2002, 127, 715-718) /3/.

Однако данный известный рабочий электролит применяется для определения только катионов и анионов неорганических кислот и только в водной среде. Он не применяется для определения аминов и анионов органических кислот в жидких средах. Его не применяют для определения ионного состава водно-спиртовых сред, характерных для битехнологических процессов, для ликероводочных производств.

Техническим результатом, достигаемым настоящим изобретением, является обеспечение универсальности условий для одновременного определения катионов, аминов, анионов органических и неорганических кислот в жидких водных и водно-спиртовых средах пищевых производств, биотехнологических процессов, ликероводочных производств, производства безалкогольных напитков и вод.

Достигается указанный технический результат за счет того, что рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред, содержащий гистидин, 2-морфолиноэтансульфоновую кислоту, Краун-эфир и воду, дополнительно содержит Тритон Х-100 при следующем соотношении ингредиентов, мМоль/л:

гистидин25-352-морфолиноэтансульфоновая кислота100-140Краун-эфир1,5-2,5а также, %:Тритон Х-1000,02-0,50водаостальное

Собственные исследования показали, что, изменив соотношение ингредиентов в известном рабочем электролите 131 и добавив в его состав тритон Х-100 (алкил-циклогексил или алкил-фенил полигликолевый эфир), можно использовать новый рабочий электролит для одновременного определения катионов, аминов, анионов неорганических и органических кислот, причем не только в водных, но и в водно-спиртовых средах.

Ниже приведены примеры, иллюстрирующие изобретение.

Пример 1. Проводят анализ образца питьевой воды. Для определения ионного состава готовят рабочий электролит следующего состава: 25 мМоль/л гистидина, 100 мМоль/л 2-морфолиноэтансульфоновой кислоты, 1,5 мМоль Краун-эфира и 0,02% Тритона Х-100, вода - остальное. Капилляр заполняют приготовленным рабочим электролитом. Используют капилляр с внутренним диаметром 50 мкм. Эффективная длина капилляра 80 см со стороны катионов и аминов и 40 см со стороны анионов. Пробу анализируемой жидкости последовательно вводят в заполненный рабочим электролитом капилляр с двух концов под давлением 20 мбар в течение 30 с. Затем воздействуют на пробу в капилляре электрическим полем с рабочим напряжением 28 кВ. В пробе обнаружены анионы неорганических кислот: 5,33 мг/дм3 хлоридов, 0,39 мг/дм3 нитратов, 18,87 мг/дм3 сульфатов, 3,30 мг/дм3 фторидов, и катионы: 0,09 мг/дм3 аммония, 3,71 мг/дм3 калия, 15,64 мг/дм3 кальция, 44,58 мг/дм3 натрия, 11,48 мг/дм3 магния и 1,23 мг/дм3 стронция.

Пример 2. Проводят анализ образца воды исправленной. Для определения ионного состава готовят рабочий электролит следующего состава: 35 мМоль/л гистидина, 140 мМоль/л 2-морфолиноэтансульфоновой кислоты, 2,5 мМоль Краун-эфира и 0,50% Тритона Х-100, вода - остальное. Капилляр заполняют приготовленным раствором рабочего электролита. Используют капилляр с внутренним диаметром 50 мкм. Эффективная длина капилляра 100 см со стороны катионов и аминов и 20 см со стороны анионов. Пробу анализируемой жидкости последовательно вводят в заполненный рабочим электролитом капилляр с двух концов под давлением 70 мбар в течение 30 с. Затем воздействуют на пробу в капилляре электрическим полем с рабочим напряжением 30 кВ. В пробе обнаружены анионы неорганических кислот: 2,05 мг/дм3 хлоридов, 0,16 мг/дм3 нитратов, 6,95 мг/дм3 сульфатов, 1,27 мг/дм3 фторидов, и катионы: 0,81 мг/дм3 калия, 0,25 мг/дм3 кальция, 35,34 мг/дм3 натрия и 0,11 мг/дм3 магния.

Пример 3. По методике примера 1 провели анализ образца водки. В образце определены следующие анионы неорганических кислот: 3,56 мг/дм3 хлоридов, 1,11 мг/дм3 нитратов, 15,78 мг/дм3 сульфатов, 0,17 мг/дм3 фторидов, амины: 0,15 мг/дм3 диэтиламина, 0,19 мг/дм3 этаноламина, 0,23 мг/дм3 пропиламина, анионы органических кислот: 2,74 мг/дм3 оксалатов, 0,28 мг/дм3 формиатов, 0,31 мг/дм3 ацетатов, 11,24 мг/дм3 лактатов, и катионы: 0,05 мг/дм3 аммония, 0,04 мг/дм3 калия, 0,02 мг/дм3 кальция, 14,57 мг/дм3 натрия и 0,09 мг/дм3 магния.

Пример 4. По методике примера 2 провели анализ образца пива, разбавленного в 10 раз деионизированной водой. В образце определены следующие анионы неорганических кислот: 90,42 мг/дм3 хлоридов, 40,24 мг/дм3 сульфатов, анионы органических кислот: 63,91 ацетатов, 115,26 мг/дм3 лактатов, 86,37 мг/дм3 малатов, 104,38 мг/дм3 цитратов, 104,38 мг/дм3 сукцинатов, и катионы: 20,95 мг/дм3 аммония, 76,08 мг/дм3 калия, 27,19 мг/дм3 кальция, 18,97 мг/дм3 натрия и 69,02 мг/дм3 магния.

Пример 5. По методике примера 1 провели анализ образца красного вина, разбавленного в 20 раз деионизированной водой. В образце определены следующие анионы неорганических кислот: 20,86 мг/дм3 хлоридов, 460,95 мг/дм3 сульфатов, анионы органических кислот: 850,33 мг/дм3 ацетатов, 110,46 мг/дм3 лактатов, 1908,58 мг/дм3 цитратов, 208,11 мг/дм3 сукцинатов, 632,60 мг/дм3 тартратов, и катионы: 14,25 мг/дм3 аммония, 406,19 мг/дм3 калия, 134,51 мг/дм3 кальция, 67,40 мг/дм3 натрия и 73,76 мг/дм3 магния.

Пример 6. По методике примера 2 провели анализ образца белого вина, разбавленного в 20 раз деионизированной водой. В образце определены следующие анионы неорганических кислот: 23,52 мг/дм3 хлоридов, 532,16 мг/дм3 сульфатов, анионы органических кислот: 334,16 мг/дм3 ацетатов, 356,76 мг/дм3 лактатов, 571,22 мг/дм3 цитратов, 407,98 мг/дм3 сукцинатов, 1425,21 мг/дм3 тартратов, 1589,34 мг/дм3 малатов, и катионы: 8,23 мг/дм3 аммония, 512,74 мг/дм3 калия, 144,63 мг/дм3 кальция, 129,19 мг/дм3 натрия и 156,38 мг/дм3 магния.

Пример 7. На примере искусственной смеси, содержащей 40 компонентов (9 катионов, 11 аминов, 11 анионов органических кислот и 9 анионов неорганических кислот, растворенных в двух видах растворителей: в водно-спиртовой среде и в воде), показано, что рабочий электролит согласно изобретению обеспечивает определение всех компонентов этой смеси во всех испытанных средах за одно определение.

Таким образом, рабочий электролит согласно изобретению является универсальным электролитом для одновременного электрофоретического капиллярного определения катионов, аминов, анионов органических и неорганических кислот, содержащихся в водных или водно-спиртовых средах. Он применим для анализа жидкостей сложного химического состава - продуктов биотехнологии, ликероводочной промышленности, производства безалкогольных напитков и безалкогольных напитков брожения.

Похожие патенты RU2315299C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ИОННОГО СОСТАВА ЖИДКИХ СРЕД 2006
  • Поляков Виктор Антонович
  • Мицен Виталий Евгеньевич
  • Шелехова Тамара Михайловна
  • Веселовская Ольга Владимировна
  • Скворцова Любовь Ивановна
  • Овчинников Олег Александрович
  • Космынин Александр Владимирович
  • Шелехова Наталия Викторовна
RU2313781C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ ЛЕТУЧИХ АЗОТИСТЫХ ОСНОВАНИЙ В ПРОМЕЖУТОЧНЫХ ПРОДУКТАХ СПИРТОВОГО ПРОИЗВОДСТВА, ЭТИЛОВОМ СПИРТЕ И АЛКОГОЛЬНЫХ НАПИТКАХ 2006
  • Поляков Виктор Антонович
  • Мицен Виталий Евгеньевич
  • Шелехова Тамара Михайловна
  • Веселовская Ольга Владимировна
  • Скворцова Любовь Ивановна
  • Овчинников Олег Александрович
  • Космынин Александр Владимирович
  • Шелехова Наталия Викторовна
RU2320973C1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ОРГАНИЧЕСКИХ КИСЛОТ (УКСУСНОЙ, ЯБЛОЧНОЙ, МОЛОЧНОЙ) И УГЛЕВОДОВ (МАЛЬТОЗЫ, ГЛЮКОЗЫ, ФРУКТОЗЫ) В ПОЛУПРОДУКТАХ СПИРТОВОГО ПРОИЗВОДСТВА МЕТОДОМ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ 2017
  • Поляков Виктор Антонович
  • Абрамова Ирина Михайловна
  • Медриш Марина Эдуардовна
  • Павленко Светлана Владимировна
  • Гаврилова Дарья Алексеевна
RU2653570C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОРГАНИЧЕСКИХ КИСЛОТ В БЕЗАЛКОГОЛЬНЫХ И АЛКОГОЛЬНЫХ НАПИТКАХ МЕТОДОМ КАПИЛЛЯРНОГО ЭЛЕКТРОФОРЕЗА 2007
  • Адамсон Вера Георгиевна
  • Комарова Наталья Викторовна
RU2350938C1
СПОСОБ ДИАГНОСТИКИ МОЧЕКАМЕННОЙ БОЛЕЗНИ 2011
  • Сидорова Алла Анатольевна
  • Григорьев Александр Викторович
RU2484468C2
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЩЕГО АЗОТА МЕТОДОМ КАПИЛЛЯРНОГО ЭЛЕКТРОФОРЕЗА 2013
  • Якуба Юрий Федорович
  • Филимонов Михаил Васильевич
  • Ушакова Яна Владимировна
RU2554799C2
БЕЗАЛКОГОЛЬНЫЙ НАПИТОК 1998
  • Блонский А.Г.
  • Сорокин В.В.
RU2137405C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛЮКОЗЫ, САХАРОЗЫ, ФРУКТОЗЫ 2012
  • Якуба Юрий Федорович
  • Ненько Наталия Ивановна
  • Филимонов Михаил Васильевич
  • Шестакова Вера Владимировна
  • Захарова Марина Витальевна
RU2492458C1
Способ комплексной очистки промышленных сточных вод (варианты) 2020
  • Азин Валерий Алексеевич
  • Абизгильдина Регина Рамилевна
  • Васильев Сергей Викторович
  • Занозина Валентина Федоровна
  • Федосеева Елена Николаевна
RU2749105C1
СПОСОБ ОБНАРУЖЕНИЯ АНИОННЫХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ В ВОДОСОДЕРЖАЩЕЙ СРЕДЕ 2001
  • Уфимкин Д.П.
  • Коваленко Д.Н.
RU2199107C2

Реферат патента 2008 года РАБОЧИЙ ЭЛЕКТРОЛИТ ДЛЯ ОПРЕДЕЛЕНИЯ КАПИЛЛЯРНЫМ ЭЛЕКТРОФОРЕЗОМ ИОННОГО СОСТАВА ЖИДКИХ СРЕД

Изобретение относится к пищевой промышленности, биотехнологии, ликероводочной промышленности, производству безалкогольных напитков и связано с определением содержания катионов, аминов, анионов органических и неорганических кислот в различных средах. Рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред имеет следующее соотношение ингредиентов, мМоль/л: гистидин 25-35, 2-морфолиноэтансульфоновая кислота 100-140, Краун-эфир 1,5-2,5, а также %: Тритон Х-100 0,02-0,50, вода остальное. Достигается обеспечение универсальности условий для одновременного определения содержания катионов, аминов, анионов неорганических и органических кислот в жидких водных и водно-спиртовых средах производств биотехнологии, безалкогольных напитков, ликероводочной промышленности, в водах.

Формула изобретения RU 2 315 299 C1

Рабочий электролит для определения капиллярным электрофорезом ионного состава жидких сред, содержащий гистидин, 2-морфолиноэтансульфоновую кислоту, Краун-эфир и воду, отличающийся тем, что он дополнительно содержит тритон Х-100 при следующем соотношении ингредиентов, мМоль/л:

гистидин25-352-морфолиноэтансульфоновая кислота100-140Краун-эфир1,5-2,5

а также %:

Тритон Х-1000,02-0,50водаостальное

Документы, цитированные в отчете о поиске Патент 2008 года RU2315299C1

UNTERHOLZNER V
Analyst, 2002, 127, 715-718
ВОДНЫЙ РАСТВОР ДЛЯ ПАРЕНТЕРАЛЬНОГО ПИТАНИЯ 2000
  • Гвардиола Хайме
  • Вольф Мартин
RU2242990C2
РАСТВОР КРОВЕЗАМЕНИТЕЛЯ НА ВОДНОЙ ОСНОВЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1994
  • Поль Е.Сигалл
  • Хэл Штернберг
  • Хэрольд Д.Уэйтц
  • Юди М.Сигалл
RU2142282C1
JP 3179251, 05.08.1991
US 4936963 A, 26.06.1990
WO 9810273 A1, 12.03.1998
Aldrich Chemical Co, Inc., 1988, p.1520.

RU 2 315 299 C1

Авторы

Поляков Виктор Антонович

Мицен Виталий Евгеньевич

Шелехова Тамара Михайловна

Веселовская Ольга Владимировна

Скворцова Любовь Ивановна

Овчинников Олег Александрович

Космынин Александр Владимирович

Шелехова Наталия Викторовна

Даты

2008-01-20Публикация

2006-09-20Подача