СПОСОБ СТАТИКО-ИМПУЛЬСНОЙ ОБРАБОТКИ ФАСОННЫХ ПОВЕРХНОСТЕЙ ПОВЕРХНОСТНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ Российский патент 2008 года по МПК B24B39/04 

Описание патента на изобретение RU2317886C1

Изобретение относится к технологии машиностроения, в частности к способам и устройствам для калибрования, деформирующего протягивания, упрочнения металлических фасонных поверхностей деталей типа тел вращения из сталей и сплавов поверхностным пластическим деформированием (ППД).

Известен способ статико-импульсной обработки заготовок, имеющих фасонную поверхность и сопряженную с ней часть заготовки, который включает воздействие на заготовку деформирующим инструментом, к которому прикладывают статическую нагрузку и периодическую импульсную нагрузку [1].

Способ и инструмент отличается ограниченными технологическими возможностями, не позволяет получать высококачественную обрабатываемую поверхность, т.к. применен несамоустанавливающийся инструмент, низким КПД, большой энергоемкостью, малой глубиной упрочненного слоя и небольшой степенью упрочнения обрабатываемой поверхности.

Известен способ и инструмент для обработки неполных сферических поверхностей деталей ППД, при котором обрабатываемой заготовки и деформирующему инструменту сообщают вращательное движение, причем деформирующему инструменту сообщают вращение по окружности, лежащей в плоскости, смещенной относительно центра обрабатываемой сферической поверхности, при этом угловая скорость деформирующего инструмента связана с угловой скоростью обрабатываемой заготовки соотношением ωин>>ωд, кроме того, дано математическое соотношение между усилием нагружения и усилием обкатывания [2].

Способ и инструмент отличается ограниченными технологическими возможностями, низким КПД, большой энергоемкостью, малой глубиной упрочненного слоя и небольшой степенью упрочнения обрабатываемой поверхности, при этом примененный несамоустанавливающийся инструмент не позволяет получать высококачественную обрабатываемую поверхность.

Известен способ и реализующий его двухрядный инструмент ударного действия для обработки наружных цилиндрических поверхностей, у которого первый ряд роликов установлен на упругую «плавающую» самоустанавливающуюся в радиальном направлении оправку, а второй ряд роликов смонтирован на жесткой оправке [3].

Способ и инструмент отличается ограниченными технологическими возможностями и используется только для обработки наружных цилиндрических поверхностей, низким КПД и производительностью, небольшой глубиной упрочненного слоя и невысокой степенью упрочнения обрабатываемой поверхности, сложностью, большой энергоемкостью и металлоемкостью конструкции, а также массогабаритными показателями.

Задачей изобретения является повышение производительности, качества и точности обработки фасонной поверхности заготовки, а также расширение технологических возможностей ППД благодаря использованию статико-импульсного нагружения деформирующего инструмента оригинальной конструкции, позволяющего управлять глубиной упрочненного слоя, степенью упрочнения и микрорельефом обрабатываемой фасонной поверхности.

Поставленная задача решается с помощью предлагаемого способа статико-импульсной обработки заготовок, имеющих фасонную поверхность и сопряженную с ней часть заготовки, включающий воздействие на заготовку деформирующим инструментом, к которому прикладывают статическую нагрузку и периодическую импульсную нагрузку, причем используют деформирующий инструмент в виде деформирующей втулки с продольным пазом для свободного прохождения части заготовки, сопряженной с ее фасонной поверхностью, и с рабочей внутренней поверхностью, имеющей в поперечном сечении форму идентичную и ответную форме продольного сечения обрабатываемой заготовки, и выполненной в виде заборного конуса и калибрующей части, статическую нагрузку прикладывают для сообщения движения подачи деформирующей втулке в направлении, перпендикулярном продольной оси заготовки, а периодическую импульсную нагрузку прикладывают к закрепленной на волноводе деформирующей втулке, посредством бойка и волновода, выполненных в виде стержней одинакового диаметра, при этом сообщают вращательное движение заготовке относительно ее продольной оси, обеспечивают поступление заготовки во втулку со стороны заборного конуса и выход обработанной заготовки со стороны ее калибрующей части, периодическую импульсную нагрузку вырабатывают с помощью гидравлического генератора импульсов, а скорость движения подачи деформирующей втулки Sпр, м/мин, принимают равной:

Sпр=0,01·Vз,

где Vз - скорость вращательного движения заготовки, м/мин.

Сущность предлагаемого способа поясняется чертежами.

На фиг.1 представлена схема обработки фасонной поверхности на примере шарового автомобильного пальца, где показано (тонкими линиями) первоначальное положение заготовки, условно перенесенное ниже; на фиг.2 - пример торообразной конструкции заготовки, которая обрабатывается предлагаемым способом; на фиг.3 - вид А на фиг.1, деформирующий инструмент условно показан без волновода; на фиг.4 - пример фасонной конструкции заготовки, имеющей выпуклые и вогнутые поверхности, которая обрабатывается предлагаемым способом.

Предлагаемый способ служит для статико-импульсного калибрования, деформирующего протягивания и упрочнения металлических фасонных поверхностей и сопряженные с ней части заготовок, например сферических поверхности, шаровых автомобильных пальцев 1, беговых дорожек шарошек буровых долот, горообразных (фиг.2), сложных фасонных выпуклых и вогнутых поверхностей тел вращения (фиг.4) и др. деталей с центральной осью вращения из сталей и сплавов поверхностным пластическим деформированием (ППД). Способ реализуется с помощью приспособления 2 для установки, базирования и закрепления заготовки с возможностью вращения ее относительно продольной оси и деформирующего инструмента 3.

Деформирующий инструмент 3, представляющий собой втулку, жестко закреплен на волноводе 4, расположенный в гидроцилиндре 5, который в свою очередь закреплен в патроне 6, например, вертикально-протяжного станка (не показан).

Патрон 6 и деформирующая втулка 3 совершают под действием статической силы Pст, развиваемой приводом станка, движение подачи Sпр в направлении, перпендикулярном продольной оси заготовки 1, при этом заготовка совершает вращательное движение Vз относительно своей продольной оси.

Деформирующий инструмент - втулка 3 имеет продольный паз 3′ для свободного прохождения части 1′ заготовки 1, сопрягаемой с обрабатываемой фасонной поверхностью. Внутренняя поверхность отверстия деформирующей втулки 3 является рабочей и имеет в поперечном сечении форму идентичную и ответную форме продольного сечения обрабатываемой заготовке 1, и выполненной в виде заборного конуса с углом конусности ϕ=3...5° и калибрующей части.

Деформирующая втулка 3 поступательно перемещается под действием статической силы Рст, а подвергается дополнительному воздействию периодической импульсной нагрузке Рим посредством бойка 7 и волновода 4, выполненных в виде стержней одинакового диаметра и расположенных в цилиндре 5. Импульсная нагрузка вырабатывается гидравлическим генератором импульсов (ГГИ) [4-6], последний (не показан) соединен с гидроцилиндром 5.

Импульсное нагружение Рим осуществляется посредством удара бойка 7 по торцу волновода 4, на котором установлен инструмент 3. В результате удара в бойке и волноводе возникают ударные и противоположно направленные импульсы одинаковой амплитуды и продолжительности, каждый из которых будет воздействовать на обрабатываемую поверхность с цикличностью, равной двойной продолжительности импульсов. Дойдя до обрабатываемой поверхности, ударный импульс распределяется на проходящий и отражающий. Проходящий импульс формирует динамическую составляющую силы деформации.

Ударный импульс внедряет деформирующую втулку в обрабатываемую поверхность на большую величину и в значительно короткое время, чем при традиционной обработке с использованием только статической нагрузки.

Глубина упрочненного слоя по предлагаемому способу достигает 1,5...2,5 мм, что значительно (в 3...4 раза) больше, чем при традиционном статическом упрочнении. Наибольшая степень упрочнения составляет 15...30%. В результате статико-импульсной обработки по предлагаемому способу эффективная глубина слоя, упрочненного на 20% и более возрастает в 1,8...2,7 раза, а глубина слоя, упрочненного на 10% и более, - в 1,7...2,2 раза по сравнению с традиционным упрочнением.

Приложенные к деформирующей втулке 3 осевые ударные импульсы с частотой, например, порядка 20 Гц и амплитудой 0,3...1,5 мм, существенно снижают осевое усилие.

Высота конической части деформирующей втулки определяется по формуле

lк>10z/tgϕ,

где lк - высота конической части деформирующей втулки, мм;

z - величина, равная половине натяга, мм;

ϕ - угол конической части, град.

Основным технологическим параметром процесса является натяг, который определяют, например, для сферической заготовке, по формуле

i=Do-dин,

где Do - диаметр сферической поверхности до обработки (средняя арифметическая величина с учетом отклонений формы в поперечном сечении);

dин - диаметр цилиндрической части отверстия деформирующей втулки.

При обработке с натягом i до 0,5 мм уменьшаются отклонения формы в поперечном сечении (отклонение от крутости) и повышается точность размера на 30...35%, уменьшаются параметры шероховатости поверхности. С такими натягами обрабатывают заготовки и после термической обработки.

Суммарный натяг лимитируется пластичностью материала заготовки. Заготовки из хрупких материалов обрабатывают с малыми натягами, так как при больших натягах может произойти их разрушение.

Обработка деформирующей втулкой обеспечивает оптимальные условия деформирования - инструмент имеет максимальную размерную стойкость. Стойкость деформирующей втулки из твердого сплава при обработке стальных заготовок составляет 100...150 км суммарной длины обработки.

В зависимости от размеров обрабатываемой поверхности заготовки применяют деформирующие втулки цельные (не показаны) или сборные (см. фиг.1, 3). Сборная деформирующая втулка состоит из корпуса втулки 3, твердосплавного вкладыша 8, крепежных планок 9 и поддерживающего кольца 10.

Деформирующая втулки со стороны заборного конуса имеет направляющую фаску, обеспечивающую взаимную ориентацию заготовки и инструмента.

Материал цельной деформирующей втулки и рабочей части сборной втулки: вкладыша - твердый сплав ВК8.

Радиальное биение рабочей поверхности отверстия втулки не должно превышать 0,02...0,05 мм.

Деформирующая втулка может быть выполнена симметричной (с каждого торца заборный конус, а в середине калибрующая часть) с целью работать с подачами вниз (согласно фиг.1) и повернуть втулку при ее износе.

При обработке по предлагаемому способу обязательно применяют смазочно-охлаждающее технологическое средство (СОТС), предотвращающее схватывание деформирующей втулки с обрабатываемым металлом. Отсутствие СОТС приводит к браку обработанных заготовок и нередко к разрушению инструмента. Для деталей из углеродистых и низколегированных сталей рекомендуются: сульфофрезол, МР-1, МР-2, эмульсии.

Эти же жидкости следует применять при обработке заготовок из цветных металлов (бронзы, латуни, алюминиевых сплавов).

Для деталей из высоколегированных, жаростойких и коррозионно-стойких сталей и сплавов следует применять СОТС: АСМ-1, АСМ-4, АСМ-5, АСМ-6. При обработке заготовок из закаленных сталей используют смазку АСФ-3.

Шероховатость поверхности, обработанной предлагаемым способом, зависит от исходной шероховатости и материала обрабатываемой заготовки, режима обработки, применяемой СОТС и угла рабочего заборного конуса инструмента. От скорости обработки (в пределах диапазона применяемых скоростей) шероховатость обработанной поверхности не зависит.

Для получения малых значений параметров шероховатости предварительную обработку наружной сферической поверхности целесообразно проводить твердосплавным инструментом, например резцом, имеющим малые углы в плане (ϕ=30...40°), на скоростях резания, исключающих образования нароста.

При обработке сферы и других фасонных поверхностей после переходов чернового и чистового точения (исходный параметр Ra=6,3...1,6 мкм) получают поверхности с Ra=0,8...0,1 мкм, если материал заготовок сталь; Ra=0,4...0,1 мкм при обработке заготовок из бронзы и Ra=1,6...0,4 мкм при обработке заготовок из чугуна.

Шероховатость поверхности после пластического деформирования предлагаемым способом будет тем ниже, чем меньше натяг, при котором проводится обработка фасонной поверхности.

Так, при обработке заготовки из стали 45 с исходной шероховатостью Ra=4...8 мкм получили следующую шероховатость при натягах на деформирующем инструменте:

Натяг i, мм..............0,050,100,200,400,80Параметр Ra, мкм.........0,060,070,41,33,0

Упрочнение металла является следствием происходящих деформаций. Упрочнение, выражаемое изменением твердости, снижается при переходе от обработанной поверхности в глубину заготовки сферы.

Толщина слоя текстуры, обладающего повышенной твердостью, тем больше, чем больше натяг, и тем меньше, чем выше исходная твердость обрабатываемого металла. Приращение твердости зависит от обрабатываемого металла и составляет 130...260%.

Скорость продольной подачи Sпр деформирующего инструмента при обработке предлагаемым способом связана со скоростью вращения заготовки Vз следующим соотношением:

Sпр=0,01·Vз,

где Sпр - скорость продольной подачи деформирующего инструмента, м/мин;

Vз - скорость вращательного движения заготовки, м/мин.

Скорость вращательного движения заготовки Vз назначают в пределах 2...25 м/мин.

Для достижения точности по 11...13-му квалитетам обработку ведут с большими натягами. Для достижения точности по 8...11-му квалитетам следует применять средние натяги (0,2...0,5 мм). Для получения точности по 5...6-му квалитетам необходима предварительная точная обработка резанием, после чего деформирование проводят с малыми натягами (0,02...0,2 мм). Для последней группы заготовок целесообразна схема деформирование - резание - тонкое деформирование.

Пример. Обрабатывали заготовку пальца шарового верхнего 2101-2904187, установленную в специальном электромеханическом приспособлении на модернизированном вертикально-протяжном станке мод. 7Б65 с использованием специального ГГИ, по предлагаемому способу. Модернизация касалась установки на станке на патроне корпуса гидроцилиндра с волноводом и бойком, осуществляющих дополнительное периодическое импульсное нагружение деформирующей втулки. Заготовка изготовлена из стали 20Х ГОСТ 1050-74. Обрабатывали сферу диаметром 32,7±0,1; исходный параметр шероховатости Ra=3,2 мкм, достигнутый - Ra=0,63; деформирующим инструментом в виде втулки из твердого сплава ВК8 на следующих режимах: скорость вращения заготовки Vз=20 м/мин (nз=200 мин-1); скорость продольной подача деформирующего инструмента Sпр=0,2 м/мин; суммарный натяг на диаметр - 0,2 мм (0,1 мм на сторону); глубина слоя повышенной твердости составляла 0,15...0,20 мм; смазывающе-охлаждающей жидкостью служил сульфофрезол (5%-ная эмульсия). Прикладывали к деформирующей втулке осевые ударные импульсы с частотой 15 Гц и амплитудой 1,0...1,5 мм.

Требуемая шероховатость и точность сферической поверхности была достигнута с одного прохода за Тм=0,45 мин (против Тмбаз=2,8 мин по базовому варианту при традиционной обработке обкатыванием на Орловском сталепрокатном заводе ОСПАЗ). Контроль проводился скобой индикаторной с индикатором ИЧ 10 Б кл.1 ГОСТ 577-68 и на профилометре мод. 283 тип АН ГОСТ 19300-86. В обработанной партии (равной 100 штук) бракованных деталей не обнаружено. Отклонение обработанной поверхности от сферичности составило не более 0,02 мм, что допустимо ТУ.

Обработка показала, что параметр шероховатости обработанных сферических поверхностей уменьшился до значения Ra=0,32...0,63 мкм при исходном - Ra=3,2...6,3 мкм, производительность повысилась более чем в пять раз по сравнению с обкатыванием. Энергоемкость процесса уменьшилась в 2,2 раза.

Предлагаемый способ повышает производительность, качество и точность обработки фасонных поверхностей заготовок, а также расширяет технологические возможности ПП благодаря использованию оригинальной конструкции реформирующего инструмента и его статико-импульсного нагружения, позволяющее управлять глубиной упрочненного слоя, степенью упрочнения и микрорельефом обрабатываемой фасонной поверхности.

Источники информации

1. Патент SU 1567361 A1, В24В 39/04, 30.05.1990 - прототип.

2. Патент РФ 2031770, МКП6 В24В 39/04, 39/00. Способ обработки неполных сферических поверхностей деталей поверхностным деформированием. Гаврилин А.М., Самойлов Н.Н. 5045958/27; 14.04.92; 27.03.95. Бюл. №9.

3. Справочник технолога-машиностроителя. В 2-х т. Т.2 / Под ред. А.Г.Косиловой и Р.К.Мещерякова. - 4-е изд. перераб. и доп. - М.: Машиностроение, 1986. С.392, рис.14, б.

4. Патент РФ 2098259, МКИ6 В24В 39/00. Лазуткин А.Г., Киричек А.В., Соловьев Д.Л. Способ статикоимпульсной обработки поверхностным пластическим деформированием. №96110476/02, 23.05.96; 10.12.97. Бюл. №34.

5. Киричек А.В., Лазуткин А.Г., Соловьев Д.Л. Статико-импульсная обработка и оснастка для ее реализации.// СТИН, 1999, №6. - С.20-24.

6. Патент РФ 2090342. Лазуткин А.Г., Киричек А.В., Соловьев Д.Л. Гидроударное устройство для обработки деталей поверхностным пластическим деформированием. 1997. Бюл. №34.

Похожие патенты RU2317886C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ СТАТИКО-ИМПУЛЬСНОЙ ОБРАБОТКИ ФАСОННЫХ ПОВЕРХНОСТЕЙ 2006
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Соловьев Дмитрий Львович
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Поляков Алексей Владимирович
  • Афонин Андрей Николаевич
  • Селеменев Константин Федорович
  • Самойлов Николай Николаевич
RU2319594C1
КОМБИНИРОВАННЫЙ СПОСОБ ШЛИФОВАНИЯ И ПОВЕРХНОСТНОГО ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ 2006
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Соловьев Дмитрий Львович
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Поляков Алексей Владимирович
  • Афонин Андрей Николаевич
  • Селеменев Константин Федорович
  • Самойлов Николай Николаевич
RU2325261C2
КОМБИНИРОВАННОЕ УСТРОЙСТВО ДЛЯ ШЛИФОВАНИЯ И ПОВЕРХНОСТНОГО ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ 2006
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Соловьев Дмитрий Львович
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Поляков Алексей Владимирович
  • Афонин Андрей Николаевич
  • Селеменев Константин Федорович
  • Самойлов Николай Николаевич
RU2319595C1
УСТРОЙСТВО ДЛЯ СТАТИКО-ИМПУЛЬСНОГО УПРОЧНЕНИЯ 2009
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Самойлов Николай Николаевич
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Мальцев Анатолий Юрьевич
  • Тарасов Дмитрий Евгеньевич
  • Бурцев Василий Сергеевич
RU2433903C2
СПОСОБ СТАТИКО-ИМПУЛЬСНОГО УПРОЧНЕНИЯ 2009
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Самойлов Николай Николаевич
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Мальцев Анатолий Юрьевич
  • Тарасов Дмитрий Евгеньевич
  • Бурцев Василий Сергеевич
RU2433902C2
СПОСОБ СТАТИКО-ИМПУЛЬСНОГО ПОВЕРХНОСТНОГО ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ 2006
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Самойлов Николай Николаевич
  • Василенко Юрий Валерьевич
  • Подзолков Максим Геннадиевич
  • Селеменев Константин Федорович
RU2324584C1
СПОСОБ ОБРАБОТКИ НА СТАНКАХ СФЕРИЧЕСКИХ ПОВЕРХНОСТЕЙ ШАРОВЫХ ПАЛЬЦЕВ ПОВЕРХНОСТНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ 2006
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Соловьев Дмитрий Львович
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Поляков Алексей Владимирович
  • Афонин Андрей Николаевич
  • Селеменев Константин Федорович
  • Самойлов Николай Николаевич
RU2317887C1
УСТРОЙСТВО ДЛЯ СТАТИКО-ИМПУЛЬСНОЙ ОБРАБОТКИ ВИНТОВ 2006
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Соловьев Дмитрий Львович
  • Поляков Алексей Владимирович
  • Афонин Андрей Николаевич
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Селеменев Константин Федорович
  • Самойлов Николай Николаевич
RU2320470C1
СПОСОБ СТАТИКО-ИМПУЛЬСНОЙ ОБРАБОТКИ ВИНТОВ 2006
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Соловьев Дмитрий Львович
  • Поляков Алексей Владимирович
  • Афонин Андрей Николаевич
  • Афанасьев Борис Иванович
  • Фомин Дмитрий Сергеевич
  • Селеменев Константин Федорович
  • Самойлов Николай Николаевич
RU2320471C1
СПОСОБ СТАТИКО-ИМПУЛЬСНОГО ВЫГЛАЖИВАНИЯ 2009
  • Степанов Юрий Сергеевич
  • Киричек Андрей Викторович
  • Мальцев Анатолий Юрьевич
  • Афанасьев Борис Иванович
  • Самойлов Николай Николаевич
  • Фомин Дмитрий Сергеевич
RU2416480C1

Иллюстрации к изобретению RU 2 317 886 C1

Реферат патента 2008 года СПОСОБ СТАТИКО-ИМПУЛЬСНОЙ ОБРАБОТКИ ФАСОННЫХ ПОВЕРХНОСТЕЙ ПОВЕРХНОСТНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ

Изобретение относится к технологии машиностроения, а именно к способам поверхностного пластического деформирования заготовок, имеющих фасонную поверхность и сопряженную с ней часть заготовки. Сообщают вращательное движение заготовке относительно ее продольной оси. Воздействуют на заготовку деформирующим инструментом, к которому прикладывают статическую нагрузку и периодическую импульсную нагрузку. Используют деформирующий инструмент в виде деформирующей втулки с продольным пазом для свободного прохождения части заготовки, сопряженной с ее фасонной поверхностью. Рабочая внутренняя поверхность деформирующей втулки имеет в поперечном сечении форму идентичную и ответную форме продольного сечения обрабатываемой заготовки, и выполнена в виде заборного конуса и калибрующей части. При этом обеспечивают поступление заготовки во втулку со стороны заборного конуса и выход обработанной заготовки со стороны ее калибрующей части. В результате повышается производительность, качество и точность обработки фасонных поверхностей. 4 ил.

Формула изобретения RU 2 317 886 C1

Способ статико-импульсной обработки заготовок, имеющих фасонную поверхность и сопряженную с ней часть заготовки, включающий воздействие на заготовку деформирующим инструментом, к которому прикладывают статическую нагрузку и периодическую импульсную нагрузку, отличающийся тем, что используют деформирующий инструмент в виде деформирующей втулки с продольным пазом для свободного прохождения части заготовки, сопряженной с ее фасонной поверхностью, и с рабочей внутренней поверхностью, имеющей в поперечном сечении форму идентичную и ответную форме продольного сечения обрабатываемой заготовки, и выполненной в виде заборного конуса и калибрующей части, статическую нагрузку прикладывают для сообщения движения подачи деформирующей втулке в направлении, перпендикулярном продольной оси заготовки, а периодическую импульсную нагрузку прикладывают к закрепленной на волноводе деформирующей втулке, посредством бойка и волновода, выполненных в виде стержней одинакового диаметра, при этом сообщают вращательное движение заготовке относительно ее продольной оси, обеспечивают поступление заготовки во втулку со стороны заборного конуса и выход обработанной заготовки со стороны ее калибрующей части, периодическую импульсную нагрузку вырабатывают с помощью гидравлического генератора импульсов, а скорость движения подачи деформирующей втулки Snp, м/мин, принимают равной

Sпр=0,01·Vз,

где Vз - скорость вращательного движения заготовки, м/мин.

Документы, цитированные в отчете о поиске Патент 2008 года RU2317886C1

Инструмент импульсно-ударной обработки поверхностей деталей 1988
  • Свидерский Эдуард Антонович
  • Ящук Олег Викторович
SU1567361A1
СПОСОБ УВЕЛИЧЕНИЯ РЕСУРСА СФЕРИЧЕСКОГО ШАРНИРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Боровлев А.Д.
  • Недиков В.П.
RU2103571C1
УСТРОЙСТВО для ОБКАТКИ ДЕТАЛЕЙ С НЕПОЛНОЙ ШАРОВОЙ ПОВЕРХНОСТЬЮ 0
SU273241A1
СПОСОБ ОБРАБОТКИ НЕПОЛНОЙ СФЕРИЧЕСКОЙ ГОЛОВКИ ШАРОВОГО ПАЛЬЦА 2001
  • Михайловский И.А.
  • Гун И.Г.
  • Железков О.С.
  • Калмыков Ю.В.
RU2188115C1
US 3494013 А, 10.02.1970.

RU 2 317 886 C1

Авторы

Степанов Юрий Сергеевич

Киричек Андрей Викторович

Соловьев Дмитрий Львович

Афанасьев Борис Иванович

Фомин Дмитрий Сергеевич

Поляков Алексей Владимирович

Афонин Андрей Николаевич

Селеменев Константин Федорович

Самойлов Николай Николаевич

Даты

2008-02-27Публикация

2006-06-15Подача