СПОСОБ РАФИНИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ Российский патент 2008 года по МПК C22B9/10 C22C1/06 C22B21/06 

Описание патента на изобретение RU2318029C1

Изобретение относится к металлургии цветных металлов, в частности к способам рафинирования алюминиевых сплавов от газов, окислов и других неметаллических включений, и может быть использовано в металлургии вторичных цветных металлов при производстве алюминиевых сплавов.

Наиболее распространенным способом рафинирования алюминиевых сплавов является рафинирование при помощи флюсов, содержащих соли фтора и хлора. Несмотря на свою широкую распространенность, ближайшие аналоги обладают общим недостатком - невозможностью обеспечения равномерного распределения рафинирующих реагентов по всему объему расплава и, соответственно, снижением их рафинирующей способности. Кроме того, большинство таких флюсов экологически небезопасны. Известен способ рафинирования с использованием флюсов, содержащих криолит, фторидные и хлоридные соли: NaF 25-38 вес.%; Na3AlF6 25-37 вес.%; NaCl - остальное [А.с. 834179, С22С 1/06, С22В 9/10. Флюс для активного фильтра Б.А. Иванов, Г.Н. Чирков, А.С. Кауфман, В.В. Хлынов, Е.А. Шуликов, 16.07.1979]. Недостатком способа является то, что использование этих флюсов не дает заметного повышения физико-механических свойств сплавов.

Известен способ рафинирования алюминиевых сплавов от железа [А.с.1161575, С22С 1/06, С22В 9/10. Способ рафинирования алюминиевых сплавов от железа. А.М. Апанасенко, И.П. Иванов, М.Я. Гендельман, 19.12.1983], включающий обработку расплава рафинирующим реагентом с последующим отделением соединений железа фильтрацией, отличающийся тем, что в качестве основного рафинирующего реагента используют смесь, содержащую 10-70% оксидов алюминия, кремния и магния в количестве 0,8-1,6 вес.ч. оксида на тонну вес.ч. железа в расплаве. Смесь помещают на поверхность расплава, выдерживают расплав в течение 20-30 мин до отстаивания частиц и фильтрацию расплава осуществляют через образовавшийся на подине слой, состоящий из смеси оксидов и интерметаллидов Fe2Al5. Недостаток данного способа заключается в том, что частицы рафинирующей смеси, находясь на поверхности расплава, покрываются окисной пленкой оксида алюминия, из-за чего не полностью вступают в реакцию с расплавом. Также недостатком являются повышенные энергозатраты при выдержке расплава в течение 25-30 мин под рафинирующим реагентом.

Известен способ, в котором флюс для обработки алюминия и алюминиево-кремниевых сплавов содержит оксиды титана, бора, кальция, калия, натрия и кремния [А.с. 955706, С22В 9/10. Флюс для обработки алюминия и алюминиево-кремниевых сплавов. Ю.Н. Степанов, А.И. Конягин, В.П. Ивченков и др., 03.12.1980]. Целью обработки является улучшение механических характеристик сплава за счет защиты его от воздействия окружающей среды, модифицирования эвтектики и рафинирования от неметаллических включений. Поставленная цель достигается тем, что флюс содержит указанные компоненты в следующем соотношении, вес.%: диоксид титана 0,5-4,0; оксид бора 30-40; оксид кальция 0,5-4,0; оксид калия 15-22; оксид кремния 15-23; оксид натрия - остальное. Недостатком данного способа является невозможность обеспечения равномерного распределения флюса по объему расплава, что снижает его рафинирующую способность.

Наиболее близким аналогом (прототипом) к предлагаемому изобретению является способ рафинирования с использованием комбинированных флюсов. Комбинированный флюс состоит из 20-40% солевого флюса, применяемого по технологии серийной плавки, а 60-80% его массы заменяют другими технологическими добавками с целью усилить защитные, рафинирующие свойства флюса и его экологичность, улучшить температурный режим плавки. Технологическими добавками являются вещества, состоящие из оксидов Al2О3, SiO2, MgO и др., т.е. огнеупорные и теплоизоляционные материалы, например молотый шамот, вспученные перлит, вермикулит и т.п. [С.В. Филиппов, В.Ф. Колосков. Опыт применения комбинированных флюсов. - Прогрессивные литейные технологии: Труды III Междунар. науч.-практ. конф. - М.: МИСиС, 2005. - С.242-246]. Комбинированный флюс - порошкообразная, сыпучая масса, которая, равномерно покрывая зеркало расплава сравнительно толстым слоем, предохраняет его от контакта с атмосферой цеха и испарения компонентов, как сплава, так и флюса. Ввиду того, что флюс наносится на зеркало расплава, данный способ рафинирования обладает недостатком, связанным с тем, что при последующем дроблении флюса и замешивании его в расплав не удается равномерно распределить рафинирующие реагенты во всем объеме расплава, что существенно снижает рафинирующую способность флюса.

Задачей предлагаемого изобретения является создание способа рафинирования, отличающегося повышенной рафинирующей способностью, низкой себестоимостью и экологической безопасностью. Этот технический результат достигается тем, что при рафинировании алюминиевых сплавов, включающем обработку расплава флюсом, содержащим хлориды, фториды и огнеупорные наполнители в виде дисперсных частиц тугоплавких оксидов алюминия и кремния, флюс замешивают в расплав, находящийся в твердожидком состоянии, а затем нагревают его до температуры 720-730°С, т.е. выше ликвидуса, при следующем соотношении компонентов флюса, вес.%: KCl 1,9-9,4; NaCl 1,2-6,0; Na3AlF6 0,9-4,6; оксиды Al и Si - остальное. От ближайшего прототипа предлагаемый способ рафинирования отличается тем, что содержание дисперсных тугоплавких частиц оксидов Al и Si в составе флюса достигает 80-96 вес.%, а также самой технологией рафинирования. Для реализации предлагаемого способа рафинирования разработана технология введения рафинирующих средств в сплав. Рафинирующую смесь, перемешивая, вводят в сплав, нагретый до температур в интервале ликвидус-солидус, т.е. находящийся в твердожидком состоянии, что и обеспечивает равномерное распределение реагентов в сплаве. При последующем повышении температуры до 720-730°С происходит активное взаимодействие флюса с расплавом, в результате которого частицы рафинирующего реагента всплывают на поверхность, адсорбируя при этом находящиеся в расплаве газы, окислы и др. неметаллические включения. Дисперсные частицы тугоплавких оксидов алюминия и кремния вводят в состав флюса в виде SiO2 или метакаолинита Al2O3·2SiO2 (прокаленного при t=550-600°С каолинита Al2O3·2SiO2·H2O для удаления конституционной влаги).

ПРИМЕР 1:

Рафинирование сплава АК12 (ГОСТ 1583-93) стандартным рафинирующим флюсом при 720-730°С. Состав флюса, вес.%:

KCl47NaCl30Na3AlF623

Длительность выдержки расплава под флюсом 30 мин.

ПРИМЕР 2:

Рафинирование сплава АК12 по предлагаемому способу комбинированным флюсом состава, вес.%:

KCl1,9NaCl1,2Na3AlF60,9SiO296

При рафинировании сплава АК12 рафинирующий флюс вводили в количестве 2,5% от массы сплава. Замешивание флюса осуществляли в интервале температур ликвидус - солидус (Т=570-575°С). При последующем нагревании расплава до 730°С флюс взаимодействовал с расплавом с экзотермическим эффектом. С поверхности расплава снимали шлаки и отливали стандартные образцы по ГОСТ 1583-93 для последующих механических испытаний.

Длительность выдержки расплава под флюсом 15-20 мин.

ПРИМЕР 3:

Рафинирование сплава АК12 по предлагаемому способу комбинированным флюсом состава, вес.%:

KCl 1,9NaCl 1,2Na3AlF6 0,9Метакаолинит Al2O2·2SiO2 96

Рафинирование осуществляли аналогично способу, описанному в примере 2.

Длительность выдержки расплава под флюсом 15-20 мин.

ПРИМЕР 4:

Рафинирование сплава АК12 по предлагаемому способу комбинированным флюсом состава, вес.%:

KCl 9,4NaCl 6,0Na3AlF6 4,6SiO2 80

Рафинирование осуществляли аналогично способу, описанному в примере 2.

Длительность выдержки расплава под флюсом 15-20 мин.

ПРИМЕР 5:

Рафинирование сплава АК12 по предлагаемому способу комбинированным флюсом состава, вес.%:

KCl 9,4NaCl 6,0Na3AlF6 4,6Метакаолинит Al2O3·2SiO2 80

Рафинирование осуществляли аналогично способу, описанному в примере 2.

Длительность выдержки расплава под флюсом 15-20 мин.

Уменьшение в составе флюса огнеупорной составляющей менее 80% и увеличение количества солей не усиливает рафинирующей способности флюса, но отрицательно воздействует на стенки тигля, футеровку печи и ухудшает экологическую обстановку в цехе. С другой стороны, уменьшение в составе флюса солевой составляющей менее 4% увеличивает прямые потери металла со шлаком, т.к. не обеспечивает эффективного разделения металла и шлака. Этим и определяются граничные значения содержания огнеупорных наполнителей - тугоплавких оксидов алюминия и кремния (80-96 вес.%) и солевых составляющих (20-4 вес.%).

Эффективность рафинирования сплава комбинированными флюсами оценивали по механическим свойствам сплава - временному сопротивлению разрыву σВ, МПа, и относительному удлинению δ, %. Результаты механических испытаний приведены в таблице 1.

Таблица 1.Способ рафинирования (состав флюса в вес.%)Временное сопротивление разрыву σВ, МПаОтносительное удлинение δ, %1Рафинирование стандартным рафинирующим флюсом (47% KCl, 30% NaCl, 23% Na3AlF6) при 720-730°С1904,22Рафинирование комбинированным флюсом (1,9% KCl, 1,2% NaCl, 0,9% Na3AlF6, 96% SiO2)2035,53Рафинирование комбинированным флюсом (1,9% KCl, 1,2% NaCl, 0,9% Na3AlF6, 96% метакаолинит)2025,54Рафинирование комбинированным флюсом (9.4% KCl, 6.0% NaCl, 4.69% Na3AlF6, 80% SiO2)2086,05Рафинирование комбинированным флюсом (9.4% KCl, 6.0% NaCl, 4.69% Na3AlF6, 80% метакаолинит)2106,5

Результаты испытаний показывают, что при использовании комбинированных флюсов, заявленных в изобретении, существенно повышается эффективность процесса рафинирования алюминиевых сплавов, что приводит к повышению их механических свойств. За счет сокращения длительности выдержки расплава под флюсом снижаются энергозатраты или себестоимость рафинирования. Уменьшение содержания солевых составляющих во флюсе (≤20 вес.%) способствует повышению экологической безопасности.

Похожие патенты RU2318029C1

название год авторы номер документа
СПОСОБ РАФИНИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ 2009
  • Панфилов Александр Васильевич
  • Бранчуков Дмитрий Николаевич
  • Прусов Евгений Сергеевич
  • Скотников Юрий Сергеевич
RU2396365C1
РАФИНИРУЮЩИЙ ФЛЮС ДЛЯ УДАЛЕНИЯ МАГНИЯ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2007
  • Зенькович Георгий Степанович
  • Лысенко Андрей Павлович
  • Кустюков Андрей Васильевич
RU2368674C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВО-КРЕМНИЕВОГО СПЛАВА 2008
  • Николаев Михаил Дмитриевич
  • Кузнецов Александр Александрович
RU2391421C1
РАФИНИРУЮЩИЙ ФЛЮС ДЛЯ УДАЛЕНИЯ МАГНИЯ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2006
  • Зенькович Георгий Степанович
  • Лысенко Андрей Павлович
RU2331678C1
ВЫСОКОТЕМПЕРАТУРНЫЙ РАФИНИРУЮЩИЙ ФЛЮС ДЛЯ УДАЛЕНИЯ МАГНИЯ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2008
  • Зенькович Георгий Степанович
  • Лысенко Андрей Павлович
  • Кустюков Андрей Васильевич
RU2368675C1
Активный раскислитель-модификатор для алюминиевых сплавов и шлаков 2022
  • Уфимцев Артем Анатольевич
RU2789622C1
Флюс для обработки алюминиевых сплавов 2020
  • Пискарев Денис Валерьевич
  • Ульянов Дмитрий Сергеевич
  • Тихонов Александр Валерьевич
RU2758700C1
СПОСОБ РАФИНИРОВАНИЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ 1994
  • Паленко А.И.
  • Шустеров С.В.
  • Кононов М.П.
  • Липинский Л.П.
  • Волков И.В.
  • Васильев В.А.
  • Оскольских А.П.
  • Шеметев Г.Ф.
  • Чупалова Т.А.
  • Криушин А.В.
  • Чулков В.С.
RU2089639C1
Флюс для рафинирования первичного алюминия 2022
  • Бабкин Владимир Григорьевич
  • Чеглаков Владимир Викторович
  • Трунова Алина Игоревна
  • Степанов Дмитрий Валерьевич
RU2791654C1
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЙСОДЕРЖАЩЕГО КОМПОНЕНТА ДЛЯ ПРИГОТОВЛЕНИЯ КРЕМНИЙСОДЕРЖАЩИХ СПЛАВОВ 2009
  • Николаев Михаил Дмитриевич
  • Кузнецов Александр Александрович
RU2393259C1

Реферат патента 2008 года СПОСОБ РАФИНИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ

Способ рафинирования алюминиевых сплавов включает обработку расплава флюсом, содержащим хлориды, фториды и огнеупорные наполнители в виде дисперсных частиц тугоплавких оксидов алюминия и кремния, при этом флюс замешивают в сплав, находящийся в твердожидком состоянии, а затем нагревают его до температуры 720-730°С. В качестве основного рафинирующего реагента во флюсе используется диоксид кремния SiO2 или метакаолинит Al2О3·2SiO2 при следующем соотношении компонентов, вес.%: KCl 1,9-9,4, NaCl 1,2-6,0, Na3AlF6 0,9-4,6, SiO2 или Al2O3·2SiO2 - остальное. Обеспечивается повышенная рафинирующая способность, низкая себестоимость и экологическая безопасность. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 318 029 C1

1. Способ рафинирования алюминиевых сплавов, включающий обработку расплава флюсом, содержащим хлориды, фториды и огнеупорные наполнители в виде дисперсных частиц тугоплавких оксидов алюминия и кремния, отличающийся тем, что флюс замешивают в сплав, находящийся в твердожидком состоянии, а затем нагревают его до температуры 720-730°С.2. Способ по п.1, отличающийся тем, что в качестве основного рафинирующего реагента во флюсе используют диоксид кремния SiO2 или метакаолинит Al2О3·2SiO2 при следующем соотношении компонентов, вес.%:

KCl1,9-9,4NaCl1,2-6,0Na3AlF60,9-4,6SiO2 или Al2O3·2SiO2остальное

Документы, цитированные в отчете о поиске Патент 2008 года RU2318029C1

ФИЛИППОВ С.В., КОЛОСКОВ В.Ф
Опыт применения комбинированных флюсов
- Прогрессивные литейные технологии: Труды III Междунар
научн.-практ
конф
- Москва, МИСиС, 2005, с.242-246
Способ рафинирования алюминиевых сплавов 1990
  • Руденко Владимир Андреевич
SU1721110A1
Способ обработки алюминиевых сплавов 1990
  • Гель Виталий Иванович
  • Тодораки Иван Евгеньевич
  • Погорелов Александр Иванович
  • Карнаков Дмитрий Егорович
  • Исламов Рафаэль Султанович
  • Ткаченко Павел Петрович
  • Чикоданов Александр Иванович
SU1705384A1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ СИЛУМИНОВ 2000
  • Казанцев Г.Ф.
  • Барбин Н.М.
  • Бродова И.Г.
  • Моисеев Г.К.
  • Ватолин Н.А.
  • Башлыков Д.В.
  • Манухин А.Б.
RU2177048C1
СПОСОБ РАФИНИРОВАНИЯ АЛЮМИНИЯ И СПЛАВОВ НА ЕГО ОСНОВЕ 1997
  • Кононов М.П.
  • Липинский Л.П.
  • Шустеров С.В.
  • Паленко А.И.
  • Шеметев Г.Ф.
  • Васильев В.А.
  • Оскольских А.П.
  • Кузнецов С.С.
  • Чупалова Т.А.
RU2112065C1
KR 20040037266 A 06.05.2004
JP 2002194453 A 10.07.2002.

RU 2 318 029 C1

Авторы

Панфилов Александр Васильевич

Бранчуков Дмитрий Николаевич

Панфилов Алексей Александрович

Панфилов Александр Александрович

Петрунин Алексей Валерьевич

Чернышова Татьяна Александровна

Калашников Игорь Евгеньевич

Кобелева Любовь Ивановна

Болотова Людмила Константиновна

Даты

2008-02-27Публикация

2006-06-28Подача