Изобретение относится к разработке новых сульфидных соединений с гигантским магнитосопротивлением (с особыми магнитоэлектрическими свойствами), которые могут быть использованы для нужд микроэлектроники.
Известны оксидные соединения марганца типа La1-xAxMnO3 (A=Ca, Sr, Pb и т.д.; 0<х≤0,4) и способы их получения [Нагаев Э.Л. Манганиты лантана и другие магнитные полупроводники с гигантским магнитосопротивлением [УФН. - 1996. - Т.166, №8. - С.796-857], которые имеют кристаллическую структуру перовскита, являются полупроводниками и претерпевают при температуре перехода ферромагнетик-парамагнетик в области T˜180÷200 К эффект гигантского магнитосопротивления (ГМС), лежащий в основе микроэлектронных устройств. Данные вещества в виде порошков готовились методом осаждения из растворов, затем порошки прессовали при комнатной температуре и отжигали в токе кислорода при 1200°С в течение 12 часов.
Недостатком указанных веществ является высокая стоимость входящих в их состав редкоземельных элементов и реализация эффекта ГМС в узком температурном интервале вблизи температуры магнитного перехода.
Известны также катион-замещенные сульфиды европия с гранецентрированной кубической решеткой [Метфессель З., Маттис Д. Магнитные полупроводники. М.: Мир. 1972 - 405 с], которые в интервале температур 4,2-40 К являются ферромагнитными полупроводниками и претерпевают эффект гигантского магнитосопротивления (ГМС) при температуре перехода ферромагнетик-парамагнетик в области Т=40 К. Недостатком сульфидов европия является присутствие редкоземельных элементов в составе сульфида и низкие значения температуры, при которой имеет место гигантское магнитосопротивление.
Наиболее близким к заявляемому изобретению по технической сущности является ферромагнитный железомарганцевый сульфид FexMn1-xS [патент РФ №2256618. Бюл. №20 от 20.07.2005, (прототип)], содержащий компоненты при следующем соотношении, атом. %: Fe - 12,5-20; Mn 30-37,5 и S - 50 и имеющий кубическую структуру NaCl-типа (фиг.1а).
Недостатком известного ферромагнитного железомарганцевого сульфида является высокое содержание (50 атом.% от общего атомного веса вещества 100 атом.%) дорогостоящих металлов (железо, марганец), трехмерная кристаллическая структура вещества (кубическая решетка NaCl-типа). При катионном замещении в кристаллической структуре этих соединений атомы замещения располагаются хаотически в узлах трехмерной решетки.
Техническим результатом данного изобретения является получение дешевых ванадиевых дисульфидов хрома и меди с гигантским магнитосопротивлением.
Технический результат достигается тем, что магнитный ванадиевый дисульфид хрома-меди с гигантским магнитосопротивлением, включающий серу, дополнительно содержит ванадий, хром и медь при следующем соотношении компонентов, атом.%:
Магнитный ванадиевый дисульфид хрома-меди получен на основе дешевого дисульфида хрома-меди, относящегося к интеркалированным слоистым веществам, содержит 33-34 атом.% металлов от общего атомного веса вещества и отличается от прототипа качественным и количественным содержанием химических элементов.
На фиг.1 представлены схемы кристаллической структуры для прототипа (а) и магнитного ванадиевого дисульфида хрома-меди (b). На фиг.1b: 1 - S, 2 - Cr, 3 - Cu, 4 - вакансия. На фиг.2а представлена кривая намагничивания магнитного ванадиевого дисульфида хрома-меди с составом II (табл.1) в полях до 20 кЭ при температуре 77 К, она нелинейная, имеет полевой гистерезис и свидетельствует о том, что синтезированное вещество при температуре 77 К является ферромагнетиком.
На фиг.2b представлены температурные зависимости магнитосопротивления.
Для экспериментальной проверки заявляемого вещества были подготовлены три состава, которые приведены в таблице 1, в атомных %. В состав шихты ванадиевых дисульфидов хрома-меди CuVxCr1-xS2 в качестве исходных компонент входили электролитические мелкодисперсные порошки хрома (чистоты 99,999%), ванадия (чистоты 99,99%), меди (чистоты 99,99%) и серы (чистоты 99,999%).
Компоненты брались в соответствующих количествах (таблица 1), просушивались и помещались в кварцевые ампулы. Ампулы с шихтой вакуумировались до остаточного давления 10-3 мм рт.ст. и затем запаивались при помощи кислородной горелки. Вакуумированные ампулы помещались в стакан из нержавеющей стали, в котором находилась окись алюминия. Затем ампулы подвергались медленному нагреву в вертикальной электропечи с силитовыми нагревателями со скоростью 40°С в час до температуры 960°С. При 960°С ампулы выдерживались в течение 7 дней, затем охлаждались с печью. Скорость нагрева и охлаждения задавалась и контролировалась с помощью терморегулятора с программным управлением.
В результате синтеза получались вещества в виде плотных слитков, которые растирались в агатовой ступке до мелкодисперсного порошка для достижения гомогенности вещества. Из полученного порошка при помощи специальной прессформы прессовались бруски в виде параллелепипедов размерами 10×3×5 мм3, которые вновь помещали в кварцевые ампулы специальной формы, затем откачивались, запаивались и отжигались при 1000°С в течение недели. Скорость нагрева ампул при отжиге 40°/час. Полученные образцы были однородными по составу и использовались для измерений.
Из фиг.1, 2 и таблицы 2, где представлены физические характеристики исследуемых образцов, следует, что заявляемое вещество обладает высоким значением намагниченности и гигантским отрицательным магнитосопротивлением в диапазоне температур 77-160 К с максимальным развитием ГМС при температурах 110 К(-60%) в Н=7 кЭ, 77 К (-40%) при Н=7 кЭ. Магнитосопротивление определено по формуле
где ρ (Н=0) - электросопротивление в нулевом магнитном поле,
- электросопротивление в заданном магнитном поле.
где а, Å и с, Å - параметры кристаллической решетки;
σ, Гс·см3/г - намагниченность;
Еа, эВ - энергия активации;
TN, К - температура Нееля;
δH, % - магнитосопротивление.
Использование заявляемого изобретения позволит:
- разрабатывать элементы микроэлектроники на основе эффекта ГМС;
- сократить финансовые затраты на изготовление материалов с ГМС;
- разрабатывать элементы микроэлектроники на основе слоистых интеркалированных структур.
название | год | авторы | номер документа |
---|---|---|---|
МАГНИТНЫЙ КОБАЛЬТ-МАРГАНЦЕВЫЙ СУЛЬФИД С ГИГАНТСКИМ МАГНИТОСОПРОТИВЛЕНИЕМ | 2009 |
|
RU2404127C1 |
Гольмий-марганцевый сульфид с гигантским магнитосопротивлением | 2016 |
|
RU2629058C1 |
МОНОКРИСТАЛЛИЧЕСКИЙ ЖЕЛЕЗОМАРГАНЦЕВЫЙ СУЛЬФИД С КОЛОССАЛЬНОЙ МАГНИТОСТРИКЦИЕЙ | 2010 |
|
RU2435734C2 |
ДИСУЛЬФИД ХРОМА-МЕДИ-ЖЕЛЕЗА С АНИЗОТРОПИЕЙ МАГНИТОСОПРОТИВЛЕНИЯ | 2011 |
|
RU2466093C2 |
Альфа моносульфид марганца с эффектом гигантской магнитострикции | 2022 |
|
RU2793017C1 |
МАГНИТНЫЙ, ТЕЛЛУРСОДЕРЖАЩИЙ ХАЛЬКОГЕНИД МАРГАНЦА С ГИГАНТСКИМ МАГНИТОСОПРОТИВЛЕНИЕМ | 2010 |
|
RU2454370C1 |
Лютеций-марганцевый сульфид с гигантским продольным эффектом Нернста - Эттингсгаузена | 2021 |
|
RU2787206C1 |
СПОСОБ ПОЛУЧЕНИЯ МАНГАНИТА ЛАНТАНА, ЛЕГИРОВАННОГО КАЛЬЦИЕМ | 2012 |
|
RU2505485C1 |
КЕРАМИЧЕСКИЙ МАГНИТНЫЙ МАТЕРИАЛ | 1980 |
|
SU928757A1 |
МАГНИТОРЕЗИСТИВНЫЙ ДАТЧИК | 2006 |
|
RU2316078C1 |
Изобретение относится к разработке новых сульфидных соединений с особыми магнитоэлектрическими свойствами, которые могут быть использованы в микроэлектронике. Магнитный ванадиевый дисульфид хрома-меди с гигантским магнитосопротивлением включает серу, ванадий, хром и медь при следующем соотношении компонентов, атом.%: ванадий 0,1-3,4, хром 13,6-16,9, медь 16-17, сера 66-67. Изобретение позволяет получить вещество, обладающее высоким значением намагниченности и гигантским отрицательным магнитосопротивлением в диапазоне температур 77-160 К, 2 табл., 2 ил.
Магнитный ванадиевый дисульфид хрома-меди с гигантским магнитосопротивлением, включающий серу, отличающийся тем, что дополнительно содержит ванадий, хром и медь при следующем соотношении компонентов, ат.%:
RU 2256618 C1, 20.07.2005 | |||
Ножницы для резки материала | 1986 |
|
SU1409416A1 |
CN 1347855 A, 08.05.2002 | |||
JP 2005101441 A, 14.04.2005 | |||
НАГАЕВ Э.Л | |||
Манганиты лантана и другие магнитные проводники с гигантским магнитосопротивлением | |||
- Успехи физических наук, 1996, т.166, №8, с.833-857. |
Авторы
Даты
2008-05-20—Публикация
2006-03-09—Подача