МОЛЕКУЛЯРНО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УГЛОВЫХ ДВИЖЕНИЙ Российский патент 2008 года по МПК G01P15/08 

Описание патента на изобретение RU2324946C2

Область техники

Изобретение относится к измерительной технике, в частности к измерению углового ускорения и угловой скорости, и может найти применение в системах стабилизации движущихся объектов и системах инерциальной навигации, использующих измерители угловых движений высокой чувствительности и точности.

Предшествующий уровень техники

Известны угловые акселерометры и измерители угловой скорости, содержащие заполненный жидкостью или газом замкнутый полый контур, в котором установлен чувствительный к конвекции жидкости или газа элемент, преобразующий указанный конвективный поток в электрический сигнал (см. патент США №2644901, кл.317-231, 1953 г., патент США №5581034, 2002 г., патент США №3901123, 1975 г., авторское свидетельство СССР №723458, Кл. G01P 15/08, 1980 г.).

В изобретении по патенту США №2644901 в качестве чувствительного элемента используется электрокинетический преобразователь, обладающий огромным внутренним сопротивлением и крайне малой чувствительностью на частотах менее 0,1 Гц, что приводит, с одной стороны, к большим собственным шумам, которые пропорциональны корню квадратному из сопротивления, а с другой, требует использование усилителей с очень большим внутренним сопротивлением и корректирующей электроники. Все вместе взятое сужает динамический диапазон и резко увеличивает погрешность измерения. Это техническое решение является аналогом предлагаемого изобретения.

В изобретении по патенту США №5581034 в качестве чувствительного элемента к конвекции газа использован проволочный нагреватель с расположенными по обе стороны от него проволочными резисторами. Возникающая под действием углового ускорения конвекция газа приводит к изменению температуры проволочных резисторов и тем самым к изменению их сопротивления. Такой акселерометр имеет крайне малый динамический диапазон измерения, высокое потребление и нестабильность нуля. Это техническое решение является аналогом предлагаемого изобретения.

В изобретении по патенту США №3910123 использован проволочный нагреватель с расположенным по обе стороны от него проволочками; добавлено устройство ионизации газа и использована схема считывания заряда с металлических электродов. Устройства этого типа обладают низкой надежностью и не позволяют проводить надежные измерения в области низких частот вследствие быстрой рекомбинации зарядов противоположного знака. Точность измерения этих устройств не позволяет использовать их даже в системах стабилизации. Это техническое решение является также аналогом предлагаемого изобретения.

Прототипом предлагаемого изобретения является угловой акселерометр, описанный в авторском свидетельстве СССР №723458, МКИ G01P 15/08, 1980 г., это техническое решение содержит заполненный электролитом замкнутый контур, в котором установлено два идентичных диффузионных преобразователя потока электролита в электрический сигнал. При этом преобразователи установлены в точках пересечения контура с прямой, проходящей через центр тяжести замкнутого контура.

Основным недостатком прототипа является наличие в межкатодном пространстве пониженной плотности электролита, а также то обстоятельство, что его передаточная функция не является аналитической функцией частоты. Соответственно, для получения плоской по ускорению передаточной функции требуется несколько корректирующих цепей внешней электроники, которые вносят существенный вклад в шум акселерометра. При действии линейного ускорения, например силы тяжести, происходит всплывание этой легкой компоненты, что выражается в появлении паразитного сигнала, снижающего чувствительность акселерометра по отношению к внешнему ускорению. Установка двух преобразователей несколько минимизирует это явление. Однако, как показывает эксперимент, не может убрать его полностью. Более того, разность фаз сигналов от всплытия легкой компоненты в каждом из преобразователей нестабильна и тем самым не может быть устранена электронным образом. Данный акселерометр фактически невозможно использовать в качестве гироскопа, поскольку ошибка при двойном интегрировании сигнала по времени достигает 150% в определении угла поворота. Помимо наличия легкой компоненты в межкатодном пространстве, у прототипа, как показывает эксперимент, вблизи анодов имеется область повышенной плотности, что также ведет к появлению большого паразитного сигнала, который принципиально не может быть устранен путем установки двух диффузионных преобразователей. Это приводит к увеличению погрешности диффузионных преобразователей и за счет перекрестных влияний к сужению пределов измерений.

Раскрытие изобретения

Задачей настоящего изобретения является создание молекулярно- электронного устройства угловых движений, в котором значительно уменьшено влияние паразитных сигналов, вызванных линейными ускорениями на его работу.

Эта задача решена за счет того, что в молекулярно- электронном устройстве для измерения угловых движений, содержащем замкнутый полый контур, заполненный окислительно-восстановительным электролитом, в котором диаметрально противоположно установлены две пары преобразователей потока указанного электролита в электрический сигнал, каждый из которых включает по четыре плоских электрода, разделенных перфорированными электроизолированными перегородками, при этом, внутренние электроды служат катодами, а периферийные электроды - анодами, кроме того, преобразователи потока электролита в электрический сигнал установлены в указанном контуре со сдвигом на 3-5 градусов относительно диаметра замкнутого контура, а аноды указанных преобразователей находятся под разностью потенциалов ΔU 0,1÷1 mB.

Другими отличиями предлагаемого изобретения являются:

- замкнутый контур выполнен в виде тора, корпус которого изготовлен из материала, стойкого в окислительно-восстановительном электролите;

- геометрические параметры и материалы электродов двух пар диффузионных преобразователей потока электролита в электрический сигнал подобраны таким образом, что передаточные их функции не зависят от частоты или имеют вид 1/f, где f - частота измеряемого сигнала;

- в качестве электродов диффузионных преобразователей использована сетка из платиново-иридиевого сплава с шагом 50÷120 mk, а диэлектрические перегородки выполнены толщиной 30÷40 mk с несколькими отверстиями, диаметром 400÷800 mk, при этом передаточная функция молекулярно- электронного устройства угловых движений не зависит от частоты;

- в качестве электродов диффузионных преобразователей использована фольга из платиново-иридиевого сплава толщиной 30÷50 mk с несколькими отверстиями диаметром 250÷300 mk, а диэлектрические перегородки выполнены толщиной 30÷40 mk с несколькими отверстиями диаметром 250÷300 mk, соосными с отверстиями электродов, при этом передаточная функция молекулярно-электронного преобразователя имеет вид 1/f, где f - частота измеряемого сигнала;

- диэлектрические перегородки толщиной 30÷40 mk имеют девять отверстий;

- электроды из платиново-иридиевой фольги имеют 16 отверстий, а диэлектрические перегородки толщиной 30÷40 mk имеют 16 отверстий.

Технический результат, достигаемый предлагаемым изобретением, заключается в повышении точности, увеличении динамического и частотного диапазонов измерения при одновременной минимизации размеров молекулярно-электронного устройства для измерения угловых движений, таких как угловая скорость и угловое ускорение.

Краткое описание чертежей

На Фиг.1 схематически изображено предлагаемое молекулярно-электронное устройство для измерения угловых движений; на Фиг.2 представлен в увеличенном и объемном виде преобразователь потока электролита в электрический сигнал, электроды которого выполнены из платиново-иридиевой фольги; на Фиг.3 представлен в увеличенном и объемном виде преобразователь потока электролита в электрический сигнал, электроды которого выполнены из платиново-иридиевой сетки; на Фиг.4 представлен график зависимости амплитуды паразитного сигнала, вызванного силой тяготения, от разности потенциалов на анодах преобразователя потока электролита в электрический сигнал; на Фиг.5 представлен график зависимости амплитуды паразитного сигнала, вызванного силой тяготения в зависимости от угла установки двух пар указанных преобразователей по отношению к диаметральной линии замкнутого контура.

Пример реализации изобретения

Молекулярно-электронное устройство угловых движений (Фиг.1) включает замкнутый полый контур 1, заполненный окислительно-восстановительным электролитом 2. В качестве замкнутого контура может быть использована торовая оболочка или оболочка, имеющая в сечении прямоугольник и т.п. Оболочка замкнутого контура может быть изготовлена из химически стойкого материала, например керамики, полисульфона или поликарбоната. В качестве окислительно-восстановительного электролита может применен раствор йода в йодистом литии. В контуре диаметрально противоположно установлены два идентичных преобразователя потока электролита в электрический сигнал 3 и 4. Эти преобразователи смещены относительно диаметра 5 замкнутого контура 1 на 3÷5 градусов. Каждая пара преобразователей содержит четыре плоских электрода 6, 7, 8 и 9, разделенных перфорированными перегородками 10. Внутренние электроды 7 и 8 служат катодами, а периферийные 6 и 9 - анодами. Электроды снабжены токовыводами 11.

В преобразователе потока электролита в электрический сигнал (Фиг.2) электроды 6, 7, 8 и 9 выполнены из фольги 12 платиново-иридиевого сплава толщиной 30÷50 mk с 16 отверстиями 13 диаметром 250÷300 mk, а диэлектрические перегородки выполнены из слюды толщиной 30÷40 mk с девятью отверстиями диаметром 250÷300 mk, соосными с отверстиями электродов.

В преобразователе потока электролита в электрический сигнал (Фиг.3) электроды 6, 7, 8 и 9 выполнены из сетки 14 платиново-иридиевого сплава с шагом 50÷120 mk, а диэлектрические перегородки 10 выполнены из слюды толщиной 30÷40 mk с девятью отверстиями диаметром 400÷800 mk.

В зависимости от геометрических параметров преобразователей потока электролита в электрический сигнал, таких как толщина перегородки, диаметр отверстий и форма электродов, возможно получить передаточную функцию преобразователя, не зависящую от частоты измеряемого сигнала вплоть до нескольких десятков Гц, что необходимо для прибора, измеряющего ускорение, а также передаточную функцию вида 1/f, где f - частота измеряемого сигнала до сотен Гц, необходимую для гироскопа.

Работа устройства

При действии на молекулярно-электронное устройство угловых движений вследствие инерционности электролита 2 на преобразователи потока электролита в электрический сигнал действует давление, пропорциональное угловому движению - угловой скорости или углового ускорения. Под действием этого давления в замкнутом контуре 1 возникает циркуляция электролита со скоростью, пропорциональной давлению, а следовательно, угловой скорости или угловому ускорению. В результате этого осуществляется преобразование потока электролита в электрический сигнал, пропорциональный угловому движению.

На Фиг.4 представлен график зависимости паразитного сигнала от разности потенциалов между анодами. По оси ординат отложена амплитуда паразитного сигнала mkA, а по оси абсцисс - величины разности потенциалов ΔU между анодами 6 и 9 преобразователей потока электролита в электрический сигнал. Из графика видно, что при разности потенциалов между анодами 6 и 9 ΔU 0,1÷1 mB амплитуда паразитного сигнала не превышает 10 mkA.

На Фиг.5 представлена зависимость амплитуды паразитного сигнала от угла установки преобразователей 3 и 4, аноды которых находятся под разностью потенциалов ˜0,1÷1 mB. По оси ординат отложена амплитуда паразитного сигнала mkA, а по оси абсцисс - значение угла сдвига между преобразователями в градусах. Как это следует из представленных данных, строгий минимум достигается при сдвиге 3÷5 градусов между центрами преобразователей потока электролита в электрический сигнал. Объясняется это тем, что в силу не идеальной эквивалентности геометрических параметров, указанных преобразователей молекулярно- электронного преобразователя для измерения угловых движений такого типа, центр тяжести электролита в замкнутом контуре 1 не совпадает в точности с геометрическим центром тора. Это, в свою очередь, приводит к изменению характеристик прибора при наклоне его оси по отношению к вектору силы тяжести. Экспериментально установлено, что сдвиг указанных преобразователей на угол ˜3÷5 градусов компенсирует данное явление.

Предлагаемое изобретение позволяет повысить точность, расширить динамический и частотный диапазоны измерения угловых движений - угловой скорости и углового ускорения.

Промышленная применимость

Предлагаемое изобретение может найти применение в системах стабилизации движущихся объектов и системах инерционной навигации. Оно позволяет с помощью небольших конструктивных доработок создать приборы для измерения угловой скорости и измерения углового ускорения.

Похожие патенты RU2324946C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДНОГО УЗЛА МОЛЕКУЛЯРНО-ЭЛЕКТРОННОГО ИЗМЕРИТЕЛЯ ЛИНЕЙНЫХ И УГЛОВЫХ ДВИЖЕНИЙ (ВАРИАНТЫ) 2006
  • Козлов Владимир Алексеевич
  • Агафонов Вадим Михайлович
  • Сафонов Максим Владимирович
  • Зайцев Дмитрий Леонидович
RU2394246C2
СПОСОБ И УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ ПАРАМЕТРОВ МОЛЕКУЛЯРНО-ЭЛЕКТРОННОГО ПРЕОБРАЗОВАТЕЛЯ 2006
  • Агафонов Вадим Михайлович
  • Козлов Владимир Алексеевич
RU2374652C2
МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ ДАТЧИК УГЛОВЫХ ДВИЖЕНИЙ 2011
  • Сафонов Максим Владимирович
  • Криштоп Владимир Григорьевич
RU2454674C1
Способ обеспечения температурной стабильности параметров молекулярно-электронного преобразователя в области высоких частот 2019
  • Агафонов Вадим Михайлович
  • Егоров Егор Владимирович
  • Егоров Иван Владимирович
RU2724303C1
Магнитогидродинамическая ячейка для формирования сигнала обратной связи и калибровки молекулярно-электронных датчиков угловых и линейных движений 2017
  • Егоров Егор Владимирович
  • Агафонов Вадим Михайлович
  • Авдюхина Светлана Юрьевна
RU2651607C1
НЕМАГНИТНОЕ ИЗМЕРЕНИЕ АЗИМУТА С ИСПОЛЬЗОВАНИЕМ МЕТ ЭЛЕКТРОХИМИЧЕСКИХ ДАТЧИКОВ 2010
  • Агафонов Вадим М.
  • Егоров Иван
  • Райс Кэтерин
RU2539123C2
МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫЙ ПРЕОБРАЗОВАТЕЛЬ УГЛОВОГО УСКОРЕНИЯ 2009
  • Агафонов Вадим Михайлович
  • Голицын Владимир Юрьевич
  • Сафонов Максим Владимирович
  • Чаплыгин Александр Александрович
RU2404436C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДНОГО УЗЛА МОЛЕКУЛЯРНО-ЭЛЕКТРОННОГО ДАТЧИКА ЛИНЕЙНЫХ И УГЛОВЫХ ПЕРЕМЕЩЕНИЙ 2020
  • Елохин Владимир Александрович
  • Николаев Валерий Иванович
  • Макаров Дмитрий Аркадьевич
RU2723386C1
Схема подключения молекулярно-электронного преобразователя к электронной плате 2016
  • Агафонов Вадим Михайлович
  • Неешпапа Александр Владимирович
  • Шабалина Анна Сергеевна
RU2627139C1
Молекулярно-электронный угловой акселерометр 1981
  • Петькин Николай Васильевич
  • Осипов Юрий Николаевич
  • Федорин Владимир Алексеевич
SU987531A1

Иллюстрации к изобретению RU 2 324 946 C2

Реферат патента 2008 года МОЛЕКУЛЯРНО-ЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УГЛОВЫХ ДВИЖЕНИЙ

Изобретение относится к измерительной технике, в частности к приборам, предназначенным для измерения угловой скорости и угловых ускорений, и может найти применение в системах стабилизации движущихся объектов и системах инерционной навигации. Молекулярно-электронное устройство для измерения угловых движений содержит замкнутый полый контур в виде тора, заполненный окислительно-восстановительным электролитом, в котором диаметрально противоположно, со сдвигом относительно диаметра тора на 3÷5 градусов, установлены две пары преобразователей потока электролита в электрический сигнал, каждый из которых включает четыре плоских электрода, разделенных перфорированными электроизоляционными перегородками, при этом внутренние электроды служат катодами, а периферийные электроды анодами, при этом между анодами указанных преобразователей поддерживается разность потенциалов ˜0,1÷1 mB. Технический результат: повышение точности, расширение на динамический и частотный диапазон измерения угловых движений - угловой скорости и углового ускорения. 5 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 324 946 C2

1. Молекулярно-электронное устройство для измерения угловых движений, содержащее замкнутый полый контур, заполненный окислительно-восстановительным электролитом, в котором диаметрально противоположно установлены две пары преобразователей потока указанного электролита в электрический сигнал, каждый из которых включает четыре плоских электрода, разделенных перфорированными электроизолированными перегородками, при этом внутренние электроды служат катодами, а периферийные электроды - анодами, отличающееся тем, что преобразователи потока электролита в электрический сигнал установлены в указанном контуре со сдвигом на 3-5° относительно диаметра замкнутого контура, а аноды указанных преобразователей находятся под разностью потенциалов ˜0,1÷1 мB.2. Молекулярно-электронное устройство по п.1, отличающееся тем, что замкнутый контур выполнен в виде тора, корпус которого изготовлен из материала, стойкого в окислительно-восстановительном электролите, а геометрические параметры и материалы электродов двух пар преобразователей потока электролита в электрический сигнал подобраны таким образом, что передаточные их функции не зависят от частоты или имеют вид 1/f, где f - частота измеряемого сигнала.3. Молекулярно-электронное устройство по п.1, отличающееся тем, что в качестве электродов преобразователей потока электролита в электрический сигнал использована сетка, изготовленная из платиново-иридиевого сплава с шагом 50÷120 мкм, а диэлектрические перегородки выполнены толщиной 30÷40 мкм с несколькими отверстиями, диаметром 400÷800 мкм, при этом передаточная функция молекулярно-электронного устройства угловых движений не зависит от частоты.4. Молекулярно-электронное устройство по п.1, отличающееся тем, что в качестве электродов преобразователей потока электролита в электрический сигнал использована фольга, изготовленная из платиново-иридиевого сплава толщиной 30÷50 мкм с несколькими отверстиями диаметром 250÷300 мкм, а диэлектрические перегородки выполнены толщиной 30÷40 мкм с несколькими отверстиями диаметром 250÷300 мкм, соосными с отверстиями электродов, при этом передаточная функция молекулярно-электронного преобразователя имеет вид 1/f, где f - частота измеряемого сигнала.5. Молекулярно-электронное устройство по п.3, отличающееся тем, что диэлектрические перегородки толщиной 30÷40 мкм имеют девять отверстий.6. Молекулярно-электронное устройство по п.4, отличающееся тем, что электроды, выполненные из платиново-иридиевой фольги имеют 16 отверстий, а диэлектрические перегородки толщиной 30÷40 мкм имеют 16 отверстий.

Документы, цитированные в отчете о поиске Патент 2008 года RU2324946C2

Угловой акселерометр 1977
  • Костенко Борис Никифорович
  • Иволгин Виктор Максимович
  • Федорин Владимир Алексеевич
SU723458A1
Акселерометр 1982
  • Брунштейн Юрий Григорьевич
  • Троценко Александр Владимирович
SU1007017A1
Способ изготовления дифракционных оптических элементов 1985
  • Корольков Виктор Павлович
  • Полещук Александр Григорьевич
  • Чурин Евгений Георгиевич
SU1280560A1
US 6382025 B1, 07.05.2002
US 3960691 A, 01.06.1976.

RU 2 324 946 C2

Авторы

Агафонов Вадим Михайлович

Козлов Владимир Алексеевич

Сафонов Максим Владимирович

Мищенко Александр Петрович

Даты

2008-05-20Публикация

2005-09-30Подача