СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО ПОРОШКА Российский патент 2008 года по МПК B22F9/14 B22F1/02 B82B3/00 

Описание патента на изобретение RU2325973C2

Изобретение относится к области порошковой металлургии, в частности к получению порошковых материалов с частицами размером менее 0,2 мкм, используемых для производства металлокерамики, композиционных материалов, а также в качестве горючего термитных и пиротехнических составов и др.

Известен способ получения алюминиевого порошка с органическим покрытием (Акашев Л.А., Кононенко В.И., Кочедыков В.И., Лундина В.Г. Исследование процесса окисления реальной поверхности алюминия с органическим покрытием // Журнал физической химии. - 1985. - Т. - 59. - №11. - С.2855-2857). Суть данного способа получения алюминиевого порошка заключается в том, что для нанесения защитного покрытия отполированные пластинки алюминия погружали в 1%-ный раствор в этилацетате фторполимеров или фторкислот. Затем пластины извлекали из раствора и помещали на горизонтальную плоскость, этилацетат испарялся, а фторсодержащий компонент образовывал покрытие. Досушивание пленки проводили при 100°С в вакууме (1-3 мм рт.ст.). Для термического окисления образцы помещали в трубчатую печь, выдерживали при определенной температуре в течение заданного промежутка времени, затем образцы извлекали из печи, охлаждали до комнатной температуры. При нагревании происходила деструкция органических фторсодержащих веществ с образованием фторида алюминия, что придает повышенную термическую устойчивость алюминию до 550°С непосредственно после нанесения покрытия.

Недостатком данного способа защиты алюминия является выделение токсичных продуктов деструкции фторсодержащих органических веществ (HF, CF4 и др.). Кроме того, покрытие из AlF3 взаимодействует с парами воды (гидролиз) при хранении в воздухе с образованием токсичного HF и аморфного Al(ОН)3, что снижает устойчивость алюминия.

Наиболее близким по технической сущности и достигаемому результату к описываемому изобретению является способ получения алюминиевого порошка путем электрического взрыва алюминиевой проволоки в газовой химически инертной среде, последующего смачивания полученного при взрыве порошка алюминия раствором стеариновой кислоты в толуоле с концентрацией 3,5-20 ммоль/л в атмосфере инертного по отношению к алюминию газа при перемешивании до образования суспензии, затем порошок отделяют от раствора (А.П.Ляшко, А.П.Ильин, Г.Г.Савельев. Модифицирование поверхности субмикронных порошков алюминия. Журнал прикладной химии. Том 66, 1993, вып.6, с.1230-1233). Указанный способ позволяет повысить содержание металлического алюминия в порошке до 95,2 мас.%.

Недостатком данного способа является низкая термическая устойчивость покрытия из стеариновой кислоты, которая при нагревании до 400°С в воздухе распадается на СО2, Н2О и на органические вещества, в результате чего ее защитные свойства теряются.

Техническим результатом предложенного способа является повышение термической устойчивости алюминиевого нанопорошка до 580°С (на 45%).

Технический результат достигается тем, что в способе получения алюминиевого порошка путем электрического взрыва алюминиевой проволочки в газовой химически инертной среде, последующего смачивания полученного при взрыве порошка алюминия раствором кислоты и отделения порошка от раствора, согласно предложенному решению смачивание порошка алюминия осуществляют раствором борной кислоты в этиловом спирте с концентрацией 0,5 моль/л, а отделение порошка от раствора выполняют не ранее, чем через 1 часа после смачивания.

Пример конкретного выполнения

Алюминиевую заготовку диаметром 0,30 мкм и длиной 80 мм помещают в герметичную камеру. Камеру вакуумируют и заполняют аргоном до давления 1,5·105 Па. Взрыв заготовки проводят в LC-контуре с параметрами: индуктивность контура L=0,4 мкГн, емкость батареи конденсатора С=2,4 мкФ, сопротивление контура R=0,085 Ом, зарядное напряжение Uo=26 кВ, а плотность энергии, передаваемой на заготовку, составляет 1,5 энергии сублимации алюминия (Ес=302 кДж/моль). При этих условиях площадь удельной поверхности получаемого после взрыва алюминиевого порошка составляет 9,9 м2/г, а среднеповерхностный диаметр частиц 0,25 мкм.

Полученный порошок смачивают (без предварительного контакта с воздухом) 2 л раствора борной кислоты в обезвоженном этиловом спирте с концентрацией 0,5 моль/л. На 1 кг порошка требуется 2,5 л раствора. Порошок перемешивают до образования суспензии, после чего инертную атмосферу заменяют воздухом. По истечении 1 часа порошок отделяют от раствора посредством декантации и высушивают под тягой до воздушно-сухого состояния. Полученный порошок не пирофорен и стабилен на воздухе.

Таблица 1№ п/пКонцентрация Н3ВО3, моль/лОбразец алюминияТемпература начала окисления, °ССодержание металлического алюминия, мас.%Примечание1-без покрытия40090,620,2с покрытием43090,330,4с покрытием48090,040,5с покрытием57589,8Заявляемый способ50,7с покрытием58089,460,9с покрытием58089,271,1с покрытием58088,881,3с покрытием58088,2

Таким образом, с увеличением концентрации борной кислоты (табл.1) в растворе повышается температура начала окисления полученного нанопорошка алюминия, достигая своего оптимального значения (575-580°С) при концентрации 0,5-0,9 моль/л. Дальнейшее увеличение концентрации борной кислоты в растворе не целесообразно, т.к. значительного роста температуры начала окисления не наблюдается, а массовое содержание алюминия в нанопорошке уменьшается (табл.1).

Таблица 2Концентрация кислотE/ЕcТемпература началаПримечаниеп/покисления, °С1Стеариновая кислотаПрототип(3,5 ммоль/л)1,54102Борная кислота (0,5Заявленныймоль/л)1,5520способ

Согласно данным табл.2 при использовании раствора борной кислоты температура начала окисления нанопорошка алюминия увеличилась на 170°С, что составляет 45% в сравнении с прототипом.

Таким образом, изобретение позволяет повысить термическую устойчивость алюминиевого нанопорошка, что важно для технологий переработки нанопорошка алюминия, пожаровзрывобезопасности при его транспортировке и хранении, а также для улучшения совместимости нанопорошка алюминия с различными химическими веществами.

Похожие патенты RU2325973C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СЛАБОАГЛОМЕРИРОВАННОГО АЛЮМИНИЕВОГО ПОРОШКА 2008
  • Бекетов Игорь Валентинович
  • Котов Юрий Александрович
  • Медведев Анатолий Иванович
RU2401181C2
Способ получения алюминиевого нанопорошка 2015
  • Агеев Евгений Викторович
  • Новиков Евгений Петрович
  • Агеева Екатерина Владимировна
RU2612117C1
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 2007
  • Яворовский Николай Александрович
  • Власов Виктор Алексеевич
  • Шиян Людмила Николаевна
  • Чен Бен-Нам
RU2342972C1
НАНОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2007
  • Решетов Вячеслав Александрович
  • Ромаденкина Светлана Борисовна
  • Олифиренко Владимир Николаевич
  • Палагин Анатолий Иванович
  • Николайчук Александр Николаевич
  • Древко Светлана Владимировна
  • Фролова Ольга Владимировна
RU2347647C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ФИЛЬТРОВАНИЯ 2005
  • Псахье Сергей Григорьевич
  • Лернер Марат Израильевич
  • Руденский Геннадий Евгеньевич
  • Сваровская Наталья Валентиновна
  • Репин Владимир Евгеньевич
  • Пугачев Владимир Георгиевич
RU2317843C2
СПОСОБ АКТИВАЦИИ ПОРОШКА АЛЮМИНИЯ 2012
  • Шевченко Владимир Григорьевич
  • Еселевич Данил Александрович
  • Конюкова Алла Вячеславовна
  • Красильников Владимир Николаевич
RU2509790C1
СПОСОБ ПАССИВИРОВАНИЯ ТОНКОГО ПОРОШКА АЛЮМИНИЯ 2009
  • Милехин Юрий Михайлович
  • Фельдман Владимир Давыдович
  • Змановский Сергей Владиславович
  • Небесных Владимир Леонидович
  • Воробьёв Александр Дмитриевич
RU2407610C1
СПОСОБ ПОВЫШЕНИЯ ВОДООТТАЛКИВАЮЩИХ СВОЙСТВ ВОЙЛОЧНЫХ МАТЕРИАЛОВ ГИДРОФОБНЫМИ НАНОЧАСТИЦАМИ ДИОКСИДА КРЕМНИЯ 2014
  • Лыгденов Валерий Цырендондокович
  • Номоев Андрей Валерьевич
  • Раднаев Александр Рабданович
RU2579207C1
Термитный состав для разрушения негабаритных кусков горных пород и неметаллических строительных конструкций 2017
  • Березин Игорь Геннадьевич
  • Брагин Павел Александрович
  • Горинов Сергей Александрович
  • Маслов Илья Юрьевич
RU2660862C1
СОСТАВ ТЕРМИТНОГО ТОПЛИВА 2010
  • Ильин Александр Петрович
  • Толбанова Людмила Олеговна
  • Мостовщиков Андрей Владимирович
RU2418779C1

Реферат патента 2008 года СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО ПОРОШКА

Изобретение относится к порошковой металлургии, в частности к получению порошковых материалов с частицами размером менее 0,2 мкм, используемых для производства металлокерамики, композиционных материалов, а также в качестве горючего термитных и пиротехнических составов. Алюминиевую проволочку взрывают в газовой химически инертной среде. Полученный при взрыве порошок алюминия смачивают раствором борной кислоты в этиловом спирте с концентрацией 0,5 моль/л и отделяют порошок от раствора не ранее, чем через 1 час после смачивания. Изобретение позволяет повысить термическую устойчивость алюминиевого порошка до 580°С. 2 табл.

Формула изобретения RU 2 325 973 C2

Способ получения алюминиевого порошка путем электрического взрыва алюминиевой проволочки в газовой химически инертной среде, включающий последующее смачивание полученного при взрыве порошка алюминия раствором кислоты и отделение порошка от раствора, отличающийся тем, что смачивание порошка алюминия осуществляют раствором борной кислоты в этиловом спирте с концентрацией 0,5 моль/л, а отделение порошка от раствора выполняют не ранее чем через 1 ч после смачивания.

Документы, цитированные в отчете о поиске Патент 2008 года RU2325973C2

ЛЯШКО А.П
и др
Модифицирование поверхности субмикронных порошков алюминия
- Журнал прикладной химии, т
Приспособление для соединения пучка кисти с трубкою или втулкою, служащей для прикрепления ручки 1915
  • Кочетков Я.Н.
SU66A1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО ПОРОШКА 1997
  • Седой В.С.
RU2112629C1
Способ лечения коксартроза с поражением верхнелатерального отдела головки 1989
  • Машков Владимир Михайлович
  • Тихоненков Егор Селиверстович
SU1724194A1
Способ нанесения никелевого покрытия на алюминийсодержащие порошки 1990
  • Голодный Юрий Федорович
  • Огенко Владимир Михайлович
  • Павлик Галина Евгеньевна
  • Тоболич Валентин Владимирович
  • Фесенко Александр Васильевич
  • Цуруль Михаил Федорович
  • Чуйко Алексей Алексеевич
  • Яременко Людмила Михайловна
  • Мигунов Владимир Петрович
  • Сорин Игорь Моисеевич
SU1731431A1

RU 2 325 973 C2

Авторы

Амелькович Юлия Александровна

Годымчук Анна Юрьевна

Ильин Александр Петрович

Даты

2008-06-10Публикация

2006-07-20Подача