Изобретение относится к области порошковой металлургии, в частности к составам и способам получения порошкового алюминия, и может быть использовано для восстановления изношенных деталей, в качестве добавки в лакокрасочные покрытия, при изготовлении автомобильных покрышек, в пиротехнике, химии, энергетике для получения гидрореагирующих смесей, взаимодействующих с водой с выделением тепла и водорода, или в качестве металлического горючего во взрывчатых составах и смесевых порохах.
Известные марки алюминиевых порошков различных форм и размеров получают разнообразными способами:
- путем распыления расплава металла сжатым газом с последующей классификацией продукта распыления, патент РФ №2026157, 6 МПК B22F 9/08;
- путем электрического взрыва алюминиевой проволоки в газовой атмосфере азота, патент РФ №2112629, 6 МПК B22F 9/14;
- посредством механического сухого размола алюминиевой заготовки в атмосфере инертного газа в присутствии жировых добавок, в качестве которых используют продукты, получаемые при переработке нефти, патент РФ №2108534, 6 МПК F42B 4/00, F42B 4/30;
- путем распыления расплава нагретым до 300-400°С инертным газом, с температурой расплава - 880°С, дальнейшего охлаждения инертным газом, патент РФ №2081733, 6 МПК B22F 9/08, С22С 1/14;
- путем получения гидрореагирующей смеси, включающей порошок алюминия и порошок магния, легированный никелем, патент РФ №2131841, 6 МПК C01B 3/08, C01B 6/24.
Известен широко применяемый в промышленности способ производства алюминиевых порошков с использованием защитной (инертной по отношению к алюминию) газовой среды - азота с контролируемым содержанием кислорода, в котором с целью экономии азота используется его рециркуляция в производственном цикле распыления [Производство и применение алюминиевых порошков. - М.: Металлургия, 1980, 68 с.]. Такой способ применяется практически на всех алюминиевых заводах России, производящих распыленные порошки. На этих заводах наряду и одновременно с распыленными порошками методом размола порошков в шаровых мельницах с использованием защитной атмосферы (азот с контролируемым содержанием кислорода 2-8%) производятся алюминиевые пудры. Недостатком этого способа является большой расход азота и необходимость организации его производства.
Известно распыление расплавленного алюминия осушенным воздухом при получении крупных порошков, содержащих не более 50% фракций мельче 50-100 мкм. Такой процесс взрывобезопасен, если исключить образование пылевого облака в системе, что достигается соответствующими режимами распыления и установкой масляного фильтра в конце технологической линии, где контролируются пылевые фракции. При рассеве полученных таким способом порошков с целью выделения товарных фракций обязательно использование азота с контролируемым содержанием кислорода (не более 12%), поскольку в этой операции имеет место образование внутри грохота пылевого облака из частиц порошка менее 50 мкм. При одновременном наряду с получением порошков получении пудры размолом порошка в шаровых мельницах также необходимо обязательное использование азота с контролируемым содержанием кислорода (2-8%).
Недостатками известных способов являются высокая энергоемкость плавильно-распылительного передела и их ограниченная применимость - только к отдельным видам алюминиевых заготовок (проволока, стружка, порошок).
Наиболее близким к заявляемому является способ получения композитных нанопорошков посредством электроискрового диспергирования алюминия в диэлектрической среде, в качестве которой используют оксикарбоновую и дикарбоновую кислоты, авторское свидетельство СССР №1548950 7 МПК B22F 9/14. Существенным отличием предложенного способа является то, что не нужно использовать растворы солей и кислот, это делает процесс более дешевым и безопасным для здоровья. Так как при электроэрозионном диспергировании в дистиллированной воде не выделяется вредных веществ.
Заявляемое изобретение направлено на решение задачи получения алюминиевых нанопорошков из отходов с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.
Поставленная задача достигается способом получения алюминиевого нанопорошка из отходов, отличающимся от прототипа тем, что отходы электротехнической алюминиевой проволоки (ГОСТ 14838-78) подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95 - 105 Гц; напряжении на электродах 90 - 110 В и емкости конденсаторов 65 мкФ.
На фигуре 1 описаны этапы получения алюминиевого нанопорошка; на фигуре 2 – схема процесса ЭЭД, на фигуре 3 – фотография полученного алюминиевого порошка, на фигуре 4 – рентгенограмма алюминиевого порошка, на фигуре 5(А), (Б) и 6 − микрофотографии наночастиц алюминиевого порошка; на фиг. 5(Б) в таблице 1 − фазовый состав алюминиевого порошка.
Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [Немилови Е.Ф. Электроэрозионная обработка материалов. - Л.: Машиностроение, Ленингр. отд., 1983. – 160 с.]. Получение алюминиевого порошка на экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов [Патент RU на изобретение №2449859] проводилось по схеме, представленной на фигуре 1, в четыре этапа:
− 1 этап – подготовка к процессу электроэрозионного диспергирования;
− 2 этап – процесс электроэрозионного диспергирования;
− 3 этап – выгрузка порошка из реактора и его центрифугирование;
− 4 этап – сушка и взвешивание нанопорошка алюминия.
Получаемые этим способом порошковые материалы имеют в основном сферическую и эллиптическую форму частиц. Причем изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов), можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса. Для отделения наночастиц от крупноразмерных используется центрифуга.
На первом этапе производили сортировку алюминиевых отходов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой – дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.
На втором этапе – этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 2. Импульсное напряжение генератора 2 прикладывается к электродам 5 и далее к алюминиевым отходам 8 (в качестве электродов также служат алюминиевые отходы). При достижении напряжения определенной величины происходит электрический пробой рабочей среды 10, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырем 9). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы алюминиевого нанопорошка 7.
На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора, отделение наночастиц от крупноразмерных с помощью центрифуги. При этом крупные частицы оседают под действием центробежных сил, а наночастицы остаются в растворе.
На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание, фасовка, упаковка и последующий анализ нанопорошка.
При этом достигается следующий технический результат: получение нанопорошков алюминия с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД).
Способ позволяет получить алюминиевые порошки без использования химических реагентов, что существенно влияет на себестоимость порошка и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.
Средние удельные затраты электроэнергии при производстве алюминиевого электроэрозионного порошка составляют 2,3 кг/кВт·ч, что ниже других способов получения алюминиевых нанопорошков. Электроэрозионное диспергирование позволяет эффективно утилизировать алюминиевые отходы с невысокими энергетическими затратами и экологической частотой процесса и получать нанопорошок алюминия.
Нанопорошковые материалы, получаемые ЭЭД алюминиевых отходов, могут эффективно использоваться при изготовлении и восстановлении деталей машин различными способами, порошок является одним из компонентов холодной сварки, порошковая сварочная проволока также производится с применением порошка, алюминиевый порошок часто добавляется в лакокрасочные покрытия, при этом они приобретают сразу несколько новых качеств:
– красивый металлический оттенок;
– устойчивость к физическим факторам;
– устойчивость к действию агрессивных химических веществ.
В автомобильной промышленности при изготовлении автомобильных покрышек, что позволяет получить более износостойкий материал, который может лучше отдавать тепло. Данный легкий металл устойчив к коррозии и обладает иными положительными качествами, поэтому изготовленный из него порошок часто используют для нанесения покрытий на стальные изделия. Это осуществляется при помощи таких технологий, как плазменная наплавка и напыление, и многих других областях промышленности и народного хозяйства. При создании антифрикционных присадок используют наноразмерные порошки, так как более крупные частицы приводят к более быстрому износу узлов трения деталей машин, кроме того, крупные частицы способны оседать в маслах и СОЖ и забивать фильтры в двигателях. При создании катализаторов также используют нанопорошки, так как с уменьшением размера частиц возрастает их удельная поверхность, а следовательно, химическая и каталитическая активность.
Пример 1
Для получения алюминиевого нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанной по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью, – дистиллированной водой. При этом использовали следующие электрические параметры установки:
− частота следования импульсов 95…105 Гц;
− напряжение на электродах 90…110 В;
− емкость конденсаторов 65 мкФ.
Полученный алюминиевый порошок (Фигура 3) исследовали различными методами. Фазовый анализ порошка проводили на порошковом рентгеновском дифрактометре GBC EMMA с камерой для высокотемпературных исследований (до 1600°С) (таблица 1). На основании фигуры 4 было установлено, что основными фазами в порошке, полученном методом электроэрозионного диспергирования в дистиллированной воде, являются трехводный оксид алюминия (Al2O3·3H2O), алюминий (Al) и метагидроксид алюминия (AlO(OH)).
Для изучения формы и морфологии полученного алюминиевого нанопорошка были выполнены снимки на растровом электронном микроскопе «EOL JSM-6610». На основании фигуры 5А(частота следования импульсов 95 Гц; напряжение на электродах 90 В; емкость конденсаторов 65 мкФ) и 5Б(частота следования импульсов 105 Гц; напряжение на электродах 110 В; емкость конденсаторов 65 мкФ) нанопорошок, полученный методом ЭЭД из алюминиевых отходов, в основном состоит из частиц правильной сферической формы (или эллиптической) с включениями частиц неправильной формы (конгломератов).
Пример 2
Для получения алюминиевого нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанной по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью – дистиллированной водой. При этом использовали следующие электрические параметры установки:
− частота следования импульсов 50 Гц;
− напряжение на электродах 60 В;
− емкость конденсаторов 55 мкФ.
Для изучения формы и морфологии полученного алюминиевого нанопорошка были выполнены снимки на растровом электронном микроскопе «EOL JSM-6610». На основании фигуры 6 порошок, полученный методом ЭЭД из алюминиевых отходов при данных режимах, получается более крупноразмерным, а сам процесс диспергирования менее производительным.
Пример 3
Для получения алюминиевого нанодисперсного порошка на экспериментальной установке методом электроэрозионного диспергирования использовали отходы алюминиевой проволоки ГОСТ 14838-78, предварительно нарезанной по 5…7 см. Проволоку загружали в реактор, заполненный рабочей жидкостью – дистиллированной водой. При этом использовали следующие электрические параметры установки:
− частота следования импульсов 150 Гц;
− напряжение на электродах 160 В;
− емкость конденсаторов 65 мкФ.
При данных режимах процесс диспергирования не стабилен и носит взрывной характер.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения мелкокристаллического корунда | 2016 |
|
RU2664149C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА МЕДИ ИЗ ОТХОДОВ | 2014 |
|
RU2597445C2 |
Способ получения металлического нанопорошка из отходов свинцовой бронзы в дистиллированной воде | 2018 |
|
RU2710707C1 |
Способ получения безвольфрамовых твердосплавных порошковых материалов в воде дистилированной | 2021 |
|
RU2763431C1 |
Способ получения безвольфрамовых твердосплавных порошков из отходов сплава марки КНТ-16 в спирте этиловом | 2019 |
|
RU2747197C1 |
Способ получения спеченных изделий из изостатически спресованных электроэрозионных нанокомпозиционных порошков свинцовой бронзы | 2018 |
|
RU2713900C2 |
СПОСОБ ПОЛУЧЕНИЯ МЕДНОГО ПОРОШКА ИЗ ОТХОДОВ | 2014 |
|
RU2599476C2 |
Способ получения порошка тяжелых вольфрамовых псевдосплавов электроэрозионным диспергированием отходов сплава ВНЖ в керосине | 2020 |
|
RU2747205C1 |
Способ получения заготовок никельхромового сплава Х20Н80 | 2021 |
|
RU2779731C1 |
Способ получения спеченных изделий из электроэрозионных порошков на основе алюминиевого сплава АД0Е | 2023 |
|
RU2812059C1 |
Изобретение относится к получению алюминиевого нанопорошка из отходов электротехнической алюминиевой проволоки, содержащих не менее 99,5 % алюминия. Ведут электроэрозионное диспергирование отходов в дистиллированной воде при частоте следования импульсов 95 - 105 Гц, напряжении на электродах 90 - 10 В и емкости конденсаторов 65 мкФ с последующим центрифугированием раствора для отделения крупноразмерных частиц от нанопорошка. Обеспечивается снижение энергетических затрат и повышается экологическая чистота процесса. 6 ил., 2 пр.
Способ получения алюминиевого нанопорошка, отличающийся тем, что отходы электротехнической алюминиевой проволоки, содержащие не менее 99,5% алюминия, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 95 - 105 Гц, напряжении на электродах 90 - 110 В и емкости разрядных конденсаторов 65 мкФ с последующим центрифугированием раствора для отделения крупноразмерных частиц от нанопорошка.
SU 1548950 A1, 27.05.2003 | |||
БАЙРАМОВ Р.К | |||
Образование порошка алюминия при электроискровом диспергировании металла в водных растворах, механизм процесса | |||
Цветные металлы, 2009, N 10, 69-71 | |||
Устройство для получения порошков электроэрозионным диспергированием | 1982 |
|
SU1196140A1 |
US 20070101823 A1, 10.05.2007 | |||
АГЕЕВ Е.В | |||
Получение порошков из отходов твердых сплавов методом электроэрозионного диспергирования, Электрометаллургия, 2011, N 10, с.24-27 | |||
Разработка оборудования и технологии получения порошков из отходов вольфрамсодержащих твердых сплавов для промышленного использования | |||
Вестник машиностроения, 2013, N 11, с.51-56. |
Авторы
Даты
2017-03-02—Публикация
2015-10-19—Подача