Изобретение относится к технологии получения марганцевой соли салициловой кислоты, которая может быть использована в качестве реагентов и катализаторов ряда химических превращений в лаборатории и в промышленной практике.
Известен способ получения марганцевых солей замещенных салициловых кислот (US Patent №5306688), в соответствии с которым продукт получают обменным взаимодействием между натриевой солью кислоты и водорастворимой солью металла.
Недостатком данного способа является то, что оба реагента природными веществами не являются и требуют своего предварительного получения. И если водорастворимая соль марганца вполне доступна, то сказать так о натриевой соли кислоты уже нельзя.
Наиболее близким к заявляемому является способ получения салицилата марганца (II) (патент GB 689629A, опубл. 01.04.1953). В соответствии с ним растворяют 5,3 части безводного карбоната натрия в 100 частях воды, после чего в полученном растворе растворяют 13,8 частей салициловой кислоты. Этот раствор смешивают с раствором сульфата марганца (11,1 частей кристаллического сульфата марганца в 50 частях воды). Смесь концентрируют в вакууме при 20-25°С, фильтруют и высушивают.
По существу это то же обменное взаимодействие с той лишь разницей, что натриевую соль салициловой кислоты не выделяют, а используют ее раствор как единое целое. Следовательно, и недостатки также аналогичные. В частности:
1. В таком процессе образуется сопутствующий продукт - сульфат натрия, на что затрачивается значимая часть массы исходных реагентов.
2. Число исходных реагентов велико: это карбонат натрия, салициловая кислота и сульфат марганца. При этом анион карбоната натрия превращается при взаимодействии с салициловой кислотой в диоксид углерода, который удаляется в газовую фазу, что приводит, с одной стороны, к непроизводительной потере определенной части массы исходного реагента, а с другой - требует определенных действий и затрат на создание благоприятных условий труда обслуживающего персонала.
3. В реакционной смеси основным компонентом является вода (150 частей против 13,8+5,3+11,1 частей исходных реагентов). Таким образом, раствор продукта оказывается довольно разбавленным и требует концентрирования. Выбранные условия последнего (под вакуумом при 20-25°С) являются непростыми и времязатратными.
4. Способ предъявляет излишне жесткие и малопонятные требования к исходным реагентам. В частности, речь идет о безводном карбонате натрия, который растворяют в воде, и т.д.
Задачей предлагаемого решения является получить салицилат марганца (II) из металлического марганца и его диоксида при прямом взаимодействии с салициловой кислотой в растворах органических веществ при комнатных температурах.
Поставленная задача достигается тем, что осуществляют взаимодействие металлического марганца и его диоксида с салициловой кислотой в присутствии органического растворителя и стимулирующей добавки йода в бисерной мельнице вертикального типа со стеклянным бисером в качестве перетирающего агента в отсутствие подвода внешнего тепла, при этом содержания салициловой кислоты и йода в загрузке составляют 0,8÷2,2 и 0,04÷0,07 моль/кг соответственно, диоксид марганца берут в мольном соотношении с кислотой 1:(4,0÷4,2) и с металлом 1:(1,9÷2,3), массовое соотношение загрузки и стеклянного бисера 1:1,5, загрузку ведут в следующей последовательности: стеклянный бисер, растворитель, кислота, стимулирующая добавка и далее металл и его диоксид, а сам процесс начинают с включения перемешивания и проводят при комнатной температуре до практически полного израсходования загруженного диоксида, после чего перемешивание прекращают, суспензию продукта отделяют от стеклянного бисера и частиц непрореагировавшего марганца путем пропускания через фильтровальную перегородку в виде сетки с размерами ячеек 0,4÷0,5 мм и далее фильтруют, полученный осадок продукта промывают небольшим количеством растворителя жидкой фазы, после чего направляют на очистку путем перекристаллизации, а фильтрат, промывной растворитель и непрореагировавший металл возвращают в повторный процесс. При этом в качестве растворителя жидкой фазы используют гептан, м-ксилол, хлорбензол, уайт-спирит, и бутилацетат.
Характеристика используемого сырья:
Марганец реактивный по ГОСТ 6008-90
Диоксид марганца по ГОСТ 4470-79
Йод кристаллический по ГОСТ 4159-79
Салициловая кислота по ГОСТ 5848-73
Бутилацетат по ГОСТ 8981-78
Гептан эталонный (ТУ 6-09-4520-77)
м-Ксилол (ТУ 6-09-2438)
Хлорбензол по ГОСТ 13488-68
Уайт-спирит технический по ГОСТ 3134-78
Проведение процесса заявляемым способом следующее. В бисерную мельницу вертикального типа со стеклянным корпусом, высокооборотной мешалкой из текстолита, тефлона или другой инертной и прочной пластмассы, а также снабженную обратным холодильником-конденсатором, вводят стеклянный бисер в массовом соотношении с загрузкой 1,5:1, растворитель жидкой фазы, кислоту, стимулирующую добавку молекулярного йода, металл и его диоксид. Включают механическое перемешивание и этот момент принимают за начало процесса. По ходу процесса отбирают пробы реакционной смеси, в которых определяют содержания соли и салициловой кислоты, а также диоксида марганца. Как только диоксид марганца практически полностью расходуется, перемешивание прекращают, реакционную смесь отделяют от стеклянного бисера и основной массы тяжелых непрореагировавших частиц марганца, после чего суспензию продукта направляют на фильтрование. Осадок промывают растворителем жидкой фазы. Фильтрат, представляющий собой насыщенный раствор салицилата марганца в конечной жидкой фазе, анализируют, смешивают с промывным растворителем и вместе с непрореагировавшим металлом возвращают в повторный процесс. Соль направляют на очистку от примесей путем перекристаллизации.
Пример №1.
В бисерную мельницу со стеклянным корпусом внутренним диаметром 59 мм и высотой 140 мм с текстолитовой лопастной мешалкой, отстоящей от дна реактора на 0,3 мм, и обратным холодильником-конденсатором загружают 247,5 г стеклянного бисера диаметром 1,2÷1,8 мм и 108 г бутилацетата. Затем вводят 41,4 г салициловой кислоты, 1,9 г йода, 7,5 г металлического марганца и 6,2 г диоксида марганца. Включают механическое перемешивание и этот момент принимают за начало процесса. По ходу процесса отбирают пробы реакционной смеси и по результатам анализа определяют текущие степени превращения салициловой кислоты и диоксида марганца, а также содержание соли в реакционной смеси. Через 120 мин степень превращения салициловой кислоты превысила 96%, а диоксид марганца в отобранной пробе присутствует в следовых количествах. Перемешивание прекращают, отделяют реакционную массу от бисера, пропуская ее через фильтровальную перегородку в виде сетки с размерами отверстий ˜0,4×0,5 мм. Эту операцию выполняют таким образом, чтобы основная масса тяжелых частиц марганца осталась на дне бисерной мельницы и на бисере. Суспензию соли фильтруют. Осадок промывают 25 г бутилацетата. Промывной растворитель, фильтрат и непрореагировавший металл возвращают в повторный процесс, а полученную соль перекристаллизовывают. Выход отделенного и высушенного продукта составил 93% в расчете на загруженную кислоту.
Примеры №2-8.
Исходные реагенты, природа оксида, соотношение масс бисера и загрузки, последовательности операций проведения процесса, контроля за его ходом, выгрузки конечной реакционной смеси, выделения твердого продукта и возврата отдельных составляющих в повторный процесс аналогичны описанным в примере 1. Отличаются природой растворителя, содержанием салициловой кислоты и стимулирующей добавки в загрузке, мольными соотношениями диоксида марганца и кислоты, а также диоксида марганца и металла в загрузке. Полученные результаты сведены в таблицу (обозначения: БА - бутилацетат, Г - гептан, ХБ - хлорбензол; УС - уайт-спирит; мК - м-ксилол).
салициловой кислоты
Положительный эффект предлагаемого решения
1. Метод довольно прост в исполнении, не требует подвода внешнего тепла и соориентирован на вполне доступное сырье.
2. Упрощается катионный состав реакционной смеси. При этом примерно для половины накапливаемой соли сырьем является диоксид марганца, являющийся природным соединением.
3. Аппаратурное оформление процесса простое и не содержит котлонадзорного оборудования. Данный процесс можно с успехом провести в малоотходном варианте. В нем не образуются и не накапливаются какие-либо нежелательные ингибиторы, что дает возможность проведения последующих серий в аппаратах с заполненными мертвыми зонами и не терять реакционную смесь по этой причине. Нет никаких ограничений и на возврат отработанной жидкой фазы и непрореагировавшего металла и его оксида в повторный процесс.
4. Довольно простая очистка соли от примесей путем перекристаллизации.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения карбоксилатов олова (II) | 2017 |
|
RU2671197C1 |
СПОСОБ ПОЛУЧЕНИЯ n-АМИНОБЕНЗОАТА МАРГАНЦА (II) | 2009 |
|
RU2414451C1 |
СПОСОБ ПОЛУЧЕНИЯ ФОРМИАТА МАРГАНЦА (II) | 2006 |
|
RU2316536C1 |
СПОСОБ ПОЛУЧЕНИЯ АЦЕТАТА СВИНЦА (II) | 2008 |
|
RU2398758C1 |
Способ получения карбоксилатов олова (II) | 2017 |
|
RU2670199C1 |
СПОСОБ ПОЛУЧЕНИЯ БЕНЗОАТА МАРГАНЦА (II) | 2008 |
|
RU2391332C1 |
СПОСОБ ПОЛУЧЕНИЯ М-НИТРОБЕНЗОАТА МАРГАНЦА (II) | 2009 |
|
RU2412152C2 |
СПОСОБ ПОЛУЧЕНИЯ МАЛОНАТА И СУКЦИНАТА МАРГАНЦА (II) | 2007 |
|
RU2373182C2 |
СПОСОБ ПОЛУЧЕНИЯ АЦЕТАТА МАРГАНЦА (II) | 2005 |
|
RU2294921C1 |
СПОСОБ ПОЛУЧЕНИЯ ФОРМИАТА ЦИНКА | 2014 |
|
RU2567384C1 |
Изобретение относится к усовершенствованному способу получения салицилата марганца (II), который может быть использован в качестве реагентов и катализаторов химических превращений в лаборатории и в промышленной практике. Согласно способу осуществляют взаимодействие металлического марганца и его диоксида с кислотой в присутствии органического растворителя и стимулирующей добавки йода в бисерной мельнице вертикального типа со стеклянным бисером в качестве перетирающего агента в отсутствие подвода внешнего тепла, при этом содержания салициловой кислоты и йода в загрузке составляют 0,8÷2,2 и 0,04÷0,07 моль/кг соответственно, диоксид марганца берут в мольном соотношении с кислотой 1:(4,0÷4,2) и с металлом 1:(1,9÷2,3), массовое соотношение загрузки и стеклянного бисера 1:1,5, загрузку ведут в следующей последовательности: стеклянный бисер, растворитель, кислота, стимулирующая добавка и далее металл и его диоксид, а сам процесс начинают с включения перемешивания и проводят при комнатной температуре до практически полного израсходования загруженного диоксида металла, после чего перемешивание прекращают, суспензию продукта отделяют от стеклянного бисера и частиц непрореагировавшего марганца путем пропускания через фильтровальную перегородку в виде сетки с размерами ячеек 0,4÷0,5 мм и далее фильтруют, полученный осадок продукта промывают небольшим количеством растворителя жидкой фазы, после чего направляют на очистку путем перекристаллизации, а фильтрат, промывной растворитель и непрореагировавший металл возвращают в повторный процесс. Способ позволяет получить целевой продукт при прямом взаимодействии с салициловой кислотой в растворах при комнатных температурах. 1 з.п. ф-лы, 1 табл.
Подземный шахтный отстойник | 1974 |
|
SU689629A3 |
US 5306688 А, 26.04.1994 | |||
RU 2004104495 А, 20.07.2005. |
Авторы
Даты
2008-08-20—Публикация
2007-01-09—Подача