ОБОЛОЧКА ТЕПЛОВЫДЕЛЯЮЩЕГО ЭЛЕМЕНТА РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ Российский патент 2008 года по МПК G21C3/06 

Описание патента на изобретение RU2331941C2

Изобретение относится к атомной энергетике, в частности к оболочкам тепловыделяющих элементов атомных реакторов на быстрых нейтронах с жидкометаллическим теплоносителем, и может быть использовано для увеличения параметров работы и ресурса активной зоны реактора, обеспечения максимального выгорания ядерного топлива, повышения надежности и безопасности эксплуатации атомных электростанций.

Известна оболочка тепловыделяющего элемента, выполненная из материала - стали аустенитного класса. Эта сталь имеет удовлетворительное сочетание прочности, жаропрочности (до температур ˜650°С), коррозионной стойкости, хорошей технологичности и освоенности в промышленности [С.Н.Вотинов, И.С.Головнин, В.П.Колотушкин. Проблемы разработки перспективных материалов для оболочек твэлов реакторов на быстрых нейтронах, в Сб. Атомные электрические станции России. 60 лет атомной промышленности. Москва, 2005, с.313-335] (таблица).

Для этого материала оболочки характерны склонность к высокотемпературному радиационному охрупчиванию (ВТРО) и вакансионному распуханию, что не позволяет с требуемой эффективностью (глубина выгорания топлива ≥17% т.а., температура ˜750°С) использовать его в системах с жидкометаллическим теплоносителем, в частности, с натрием или свинцом.

Жаропрочные свойства феррито-мартенситных, аустенитных сталей и ванадиевых сплавовМатериал, содержание элементовДлительная прочность σдп на базе 10000 ч в зависимости от температурыТемпература, °С500550600650700750Длительная прочность, МПаФеррито-мартенситные стали:12% Cr, 1% Mo, W, V20015060---Аустенитные стали:16% Cr, 15% Ni, 0,5% Nb,-1601108040-0,004 ВСплавы системы V-Ti-Cr:92% V, 4% Ti, 4% Cr-37023018014010085% V, 10% Ti, 5% Cr--300-180-

Известна оболочка, выполненная из конструкционного материала - хромистой феррито-мартенситной нержавеющей стали, хорошо зарекомендовавшего себя при температурах до ˜550°С [С.Н.Вотинов, И.С.Головнин, В.П.Колотушкин. Проблемы разработки перспективных материалов для оболочек твэлов реакторов на быстрых нейтронах, в Сб. Атомные электрические станции России. 60 лет атомной промышленности. Москва, 2005, с.313-335].

Для этого материала характерны низкая жаропрочность при температурах более 550-600°С, склонность к низкотемпературному радиационному охрупчиванию (НТРО) и разупрочнение в процессе нейтронного облучения при температурах более 550°С, что препятствует применению этих материалов при температуре эксплуатации перспективных быстрых реакторов ˜750°С.

Наиболее перспективными материалами оболочек тепловыделяющих элементов реакторов на быстрых нейтронах являются сплавы на основе ванадия.

Для ванадия и сплавов на его основе характерна склонность к взаимодействию с примесными оксидами и нитридами жидкометаллических теплоносителей, приводящая к деградации механических свойств, что ограничивает применение этих сплавов в условиях контакта с жидкометаллическими теплоносителями.

За прототип выбрана оболочка тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем: свинцом или натрием, содержащая металлическую трубку с торцевыми заглушками из радиационно-стойкой хромистой стали, выполненную по крайней мере из двух слоев различных металлов, в которой металлическая трубка выполнена из ванадиевого сплава системы V-Ti-Cr, покрытого с наружной и внутренней сторон нержавеющей хромистой сталью типа XI7 [Свидетельство на полезную модель №23521, МКИ G21C 3/06].

Недостатком прототипа является то, что эта оболочка не гарантирует необходимого уровня свойств тепловыделяющего элемента. Известно, что легирование титаном подавляет низкотемпературное радиационное охрупчивание. Однако, сплавы с высокой концентрацией Ti склонны к высокотемпературному охрупчиванию. Легирование хромом снижает эффект высокотемпературного охрупчивания, но увеличение содержания хрома вновь усиливает склонность сплавов к НТРО. Также в составе материала-прототипа не учтено влияние примесей на деградацию механических свойств и распухание.

Известно, что при суммарном содержании кислорода и азота менее 0,05 мас.% в указанных сплавах при нейтронном облучении усиливается распухание, а при содержании более 0,2 мас.% повышается склонность к охрупчиванию. В описании материала - прототипа также отсутствуют характеристики слоя взаимодействия основы и покрытия, определяющего работоспособность оболочки.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение радиационной и коррозионной стойкости, повышение структурной стабильности, а также улучшение прочностных свойств и жаропрочности оболочки тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем.

Для решения поставленной задачи оболочка тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем содержит металлическую трубу из ванадиевого сплава, включающего также титан, хром и неизбежные примеси, с покрытием ее наружной и внутренней поверхности, выполненным из нержавеющей ферритной стали, при этом компоненты ванадиевого сплава находятся в следующем соотношении, мас.%:

титан8,0-12,0хром4,0-6,0сумма кислорода и азота0,05-0,2ванадийостальное,

причем соотношение титана к хрому выбрано в пределах от 2,2 до 1,8, а между ванадиевым сплавом и нержавеющей ферритной сталью сформирован переходный слой твердого раствора ванадиевого сплава с нержавеющей ферритной сталью толщиной от 6 до 8 мкм.

В частном варианте толщина покрытия из нержавеющей ферритной стали наружной и внутренней поверхности трубы составляет от 30 до 70 мкм.

В другом частном варианте для материала покрытия использована нержавеющая ферритная сталь типа X17 или Х26Т.

Оболочка, выполненная из материала с химическим составом основы, в котором отношение содержания главных легирующих компонентов Ti/Cr выдерживается в пределах ˜2:1, а суммарное содержание кислорода и азота в структуре металла - не менее 0,05 мас.% и не более 0,2 мас.%, обладает улучшенными характеристиками пластичности, прочности и жаропрочности.

Покрытие основы из ванадиевого сплава хромистой ферритной сталью типа X17 или Х26Т с зоной диффузионного сцепления слоев оболочки толщиной ˜6-8 мкм, представляющей собой твердый раствор компонентов ванадиевого сплава и ферритной стали, улучшает коррозионную стойкость в средах теплоносителей (натрий, литий, свинец) и в водной среде бассейна выдержки отработавших тепловыделяющих элементов.

Таким образом, показано, что существенные признаки изобретения позволяют достичь повышения комплекса характеристик, определяющих работоспособность элементов ядерных энергетических установок в жидкометаллических теплоносителях при температурах ≥750°С.

Исследование свойств материала оболочки проводилось на опытных плавках.

На фиг.1, фиг.2 и в таблице на примере сплава 12X17/V-4Ti-4Cr/12X17 показаны кратковременные механические свойства материала оболочки, соответствующие предъявляемым к нему требованиям.

На фиг.1 представлена температурная зависимость предела прочности (верхняя кривая) и предела текучести (нижняя кривая) для трехслойного материала.

На фиг.2 представлена температурная зависимость общего удлинения (верхняя кривая) и равномерного удлинения (нижняя кривая) для трехслойного материала.

На фиг.3 представлены механические свойства сплавов V-4Ti-4Cr и V-10Ti-5Cr.

На фиг.4 представлено распределение концентрации основных легирующих элементов в материале - пакете, изготовленном по разработанной технологии получения двухслойных и трехслойных материалов с использованием прочного и радиационно-стойкого ванадиевого сплава, плакированного коррозионно-стойкой ферритной нержавеющей сталью. Конечная толщина пакета, деформированного горячей прокаткой, составляет 0,4 мм. Толщина образовавшейся зоны диффузионного сцепления материалов составляет ˜6-8 мкм. Предлагаемый материал с соотношением легирующих компонентов основы Ti/Cr≈2:1 (фиг.3) по сравнению с наиболее освоенным промышленностью сплавом V-4Ti-4Cr имеет более высокие прочностные свойства, аналогичные пластические и более высокую жаропрочность (таблица).

На фиг.5 представлен вид поверхности разрушения образцов сплава V-4Ti-4Cr, испытанных в среде аргона, в котором содержалось ˜6 мас.% кислорода и азота.

Свойства хромистых сталей и сплавов ванадия зависят от состава и структуры, но по уровню многих физических свойств (теплопроводности, коэффициенту линейного расширения и, что особенно важно, по параметру термостойкости) эти материалы близки друг другу. Указанные компоненты сплава образуют с железом твердые растворы, что особенно важно также для процесса сварки.

Визуальный осмотр испытанных образцов показал, что при одних и тех же условиях испытания (скорость нагрева, скорость растяжения и др.) исследуемые образцы разрушаются одинаково с образованием шейки. Зона разрушения имеет вид косого среза под углом 45° к продольной оси, что свидетельствует о вязком разрушении,

На фиг.5 показано место разрыва образца после механических испытаний на разрыв в среде аргона. Видно, что образец, испытанный в среде аргона, также разрушается с образованием шейки под углом 45° к продольной оси. Однако, у боковой поверхности образца имеются надрывы, т.е. наблюдается небольшое растрескивание на боковой поверхности, так как с боков ванадиевый сплав не был защищен от окружающей среды, что говорит о реакции ванадиевой основы с примесями в аргоне, в котором содержится до 6 мас.% примесей кислорода и азота.

При испытаниях в вакууме растрескивания не наблюдалось, чем подтверждается обоснованность защиты ванадиевого сплава V-Ti-Cr сталью 12Х17.

Таким образом, в результате проведения всестороннего экспериментального исследования установлено, что предлагаемая оболочка позволяет обеспечить по сравнению с известными оболочками аналогичного назначения комплексное улучшение наиболее важных технологических и функциональных характеристик, которые обеспечивают высокую работоспособность элементов конструкций ядерных энергетических установок, работающих в сложных радиационных и коррозионных условиях.

Похожие патенты RU2331941C2

название год авторы номер документа
БЫСТРЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ 2011
  • Большов Леонид Александрович
  • Солодов Александр Анатольевич
RU2456686C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ НА ОСНОВЕ ВАНАДИЯ 2007
  • Тюменцев Александр Николаевич
  • Коротаев Александр Дмитриевич
  • Пинжин Юрий Павлович
  • Дитенберг Иван Александрович
  • Овчинников Станислав Владимирович
  • Литовченко Игорь Юрьевич
  • Чернов Вячеслав Михайлович
  • Потапенко Михаил Михайлович
  • Крюкова Людмила Маниковна
  • Дробышев Валерий Андреевич
RU2360012C1
СПОСОБ ПОЛУЧЕНИЯ ТРЕХСЛОЙНОГО МАТЕРИАЛА СТАЛЬ Х17Н2 - V-4,9Ti-4,8Cr - СТАЛЬ Х17Н2 2018
  • Курзина Ирина Александровна
  • Демент Тарас Валерьевич
  • Каракчиева Наталья Ивановна
  • Платов Владимир Владимирович
RU2704945C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ АКТИВНОЙ ЗОНЫ ВОДО-ВОДЯНОГО РЕАКТОРА НА МЕДЛЕННЫХ НЕЙТРОНАХ ИЗ МАЛОАКТИВИРУЕМОЙ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ 2009
  • Агеев Валерий Семенович
  • Друженков Владимир Владимирович
  • Иолтуховский Александр Григорьевич
  • Леонтьева-Смирнова Мария Владимировна
  • Можанов Евгений Михайлович
  • Никитина Анастасия Андреевна
  • Потапенко Михаил Михайлович
  • Фураева Елена Владиславовна
  • Шевцов Аркадий Павлович
RU2412255C1
СПЛАВ НА ОСНОВЕ FeCrAl ДЛЯ АТОМНЫХ РЕАКТОРОВ СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ 2021
  • Дегтярев Александр Фёдорович
  • Скоробогатых Владимир Николаевич
  • Орлов Александр Сергеевич
  • Логашов Сергей Юрьевич
RU2785220C1
МАЛОАКТИВИРУЕМАЯ КОРРОЗИОННО-СТОЙКАЯ И РАДИАЦИОННО СТОЙКАЯ ХРОМИСТАЯ СТАЛЬ 2006
  • Иолтуховский Александр Григорьевич
  • Велюханов Виктор Павлович
  • Зеленский Геннадий Константинович
  • Леонтьева-Смирнова Мария Владимировна
  • Погодин Владимир Павлович
  • Голованов Виктор Николаевич
  • Шамардин Валентин Кузьмич
  • Фураева Елена Владиславовна
  • Шевцов Аркадий Павлович
RU2325459C2
ТВЭЛ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ (ВАРИАНТЫ) 2005
  • Зеленский Геннадий Константинович
  • Иванов Юрий Александрович
  • Иолтуховский Александр Григорьевич
  • Леонтьева-Смирнова Мария Владимировна
  • Можанов Евгений Михайлович
  • Потапенко Михаил Михайлович
  • Солонин Михаил Иванович
  • Филин Александр Иванович
  • Шиков Александр Константинович
  • Шкабура Игорь Алексеевич
RU2302044C1
ДИСПЕРСИОННО-УПРОЧНЕННЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ Ni И СПОСОБ ДЛЯ ЕГО ПОЛУЧЕНИЯ 2011
  • Киути,Кийоси
  • Сиба Киеюки
  • Ноура,Цуеси
  • Накаяма,Дзюмпей
RU2543581C2
ТВЭЛ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ (ВАРИАНТЫ) И ОБОЛОЧКА ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2003
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Ватулин А.В.
  • Голованов В.Н.
  • Шамардин В.К.
  • Буланова Т.М.
  • Цвелев В.В.
  • Шкабура И.А.
  • Иванов Ю.А.
  • Форстман В.А.
RU2262753C2
Способ обработки ванадиевых сплавов 2020
  • Дитенберг Иван Александрович
  • Гриняев Константин Вадимович
  • Смирнов Иван Владимирович
  • Тюменцев Александр Николаевич
  • Чернов Вячеслав Михайлович
  • Потапенко Михаил Михайлович
RU2751208C1

Иллюстрации к изобретению RU 2 331 941 C2

Реферат патента 2008 года ОБОЛОЧКА ТЕПЛОВЫДЕЛЯЮЩЕГО ЭЛЕМЕНТА РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ

Изобретение относится к атомной энергетике, в частности к оболочкам тепловыделяющих элементов атомных реакторов, и предназначено для увеличения параметров работы и ресурса активной зоны реактора, обеспечения максимального выгорания ядерного топлива, повышения надежности и безопасности эксплуатации атомных электростанций. Оболочка тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем содержит металлическую трубу из ванадиевого сплава и включает титан, хром и неизбежные примеси. Наружняя и внутренняя поверхности трубки покрыты нержавеющей ферритной сталью. Компоненты ванадиевого сплава находятся в определенном соотношении. В частности соотношение титана к хрому выбрано в пределах от 2,2 до 1,8. Между ванадиевым сплавом и нержавеющей ферритной сталью сформирован переходный слой твердого раствора ванадиевого сплава с нержавеющей ферритной сталью толщиной от 6 до 8 мкм. Изобретение направлено на повышение радиационной и коррозионной стойкости, структурной стабильности, улучшение прочностных свойств и жаропрочности оболочки тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем. 2 з.п. ф-лы, 5 ил., 1 табл.

Формула изобретения RU 2 331 941 C2

1. Оболочка тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем, содержащая металлическую трубу из ванадиевого сплава, включающего также титан, хром и неизбежные примеси, с покрытием ее наружной и внутренней поверхностей, выполненным из нержавеющей ферритной стали, отличающаяся тем, что компоненты ванадиевого сплава находятся в следующем соотношении, мас.%:

титан8,0-12,0хром4,0-6,0сумма кислорода и азота0,05-0,2ванадийостальное

причем отношение титана к хрому выбрано в пределах от 2,2 до 1,8, а между ванадиевым сплавом и нержавеющей ферритной сталью сформирован переходный слой твердого раствора ванадиевого сплава с нержавеющей ферритной сталью толщиной от 6 до 8 мкм.

2. Оболочка по п.1, отличающаяся тем, что толщина покрытия наружной и внутренней поверхностей трубы составляет от 30 до 70 мкм.3. Оболочка по пп.1 и 2, отличающаяся тем, что для материала покрытий использована нержавеющая ферритная сталь типа X17 или Х26Т.

Документы, цитированные в отчете о поиске Патент 2008 года RU2331941C2

Способ получения консистентной смазки 1930
  • Великовский Д.С.
SU23521A1
SU 1345917 A1, 27.09.1996
ТЕПЛОВЫДЕЛЯЮЩИЙ ЭЛЕМЕНТ ЯДЕРНОГО РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ 2003
  • Буданов Ю.П.
  • Целищев А.В.
  • Ошканов Н.Н.
  • Коростин О.С.
  • Потоскаев Г.Г.
  • Бибилашвили Ю.К.
  • Медведев А.В.
  • Крюков О.В.
  • Бек Е.Г.
  • Бычков С.А.
RU2241266C1
АУСТЕНИТНАЯ СТАЛЬ 1994
  • Митрофанова Н.М.
  • Боголепов М.Г.
  • Решетников Ф.Г.
  • Бибилашвили Ю.К.
  • Топилина Т.А.
  • Житков Н.К.
  • Воеводин В.Н.
  • Казеннов Ю.И.
  • Захаркин В.М.
RU2068022C1
МАНИПУЛЯТОР "ЧЕРЕПАХА ПРОХОРОВА" 1999
  • Прохоров В.В.
RU2180134C2
1972
SU416313A1

RU 2 331 941 C2

Авторы

Боровицкая Ирина Валерьевна

Вотинов Сергей Николаевич

Головнин Игорь Стефанович

Губкин Игорь Николаевич

Дедюрин Анатолий Иванович

Карасев Юрий Владимирович

Колотушкин Владимир Павлович

Коронцевич Василий Константинович

Костылев Анатолий Павлович

Люблинский Игорь Евгеньевич

Повстянко Александр Викторович

Прохоров Валерий Иванович

Ревизников Леонид Иванович

Сараев Олег Макарович

Сергеев Сергей Геннадьевич

Скиба Олег Владимирович

Теплицкий Валерий Аркадьевич

Даты

2008-08-20Публикация

2006-10-09Подача