Изобретение относится к атомной энергетике, в частности к оболочкам тепловыделяющих элементов атомных реакторов на быстрых нейтронах с жидкометаллическим теплоносителем, и может быть использовано для увеличения параметров работы и ресурса активной зоны реактора, обеспечения максимального выгорания ядерного топлива, повышения надежности и безопасности эксплуатации атомных электростанций.
Известна оболочка тепловыделяющего элемента, выполненная из материала - стали аустенитного класса. Эта сталь имеет удовлетворительное сочетание прочности, жаропрочности (до температур ˜650°С), коррозионной стойкости, хорошей технологичности и освоенности в промышленности [С.Н.Вотинов, И.С.Головнин, В.П.Колотушкин. Проблемы разработки перспективных материалов для оболочек твэлов реакторов на быстрых нейтронах, в Сб. Атомные электрические станции России. 60 лет атомной промышленности. Москва, 2005, с.313-335] (таблица).
Для этого материала оболочки характерны склонность к высокотемпературному радиационному охрупчиванию (ВТРО) и вакансионному распуханию, что не позволяет с требуемой эффективностью (глубина выгорания топлива ≥17% т.а., температура ˜750°С) использовать его в системах с жидкометаллическим теплоносителем, в частности, с натрием или свинцом.
Известна оболочка, выполненная из конструкционного материала - хромистой феррито-мартенситной нержавеющей стали, хорошо зарекомендовавшего себя при температурах до ˜550°С [С.Н.Вотинов, И.С.Головнин, В.П.Колотушкин. Проблемы разработки перспективных материалов для оболочек твэлов реакторов на быстрых нейтронах, в Сб. Атомные электрические станции России. 60 лет атомной промышленности. Москва, 2005, с.313-335].
Для этого материала характерны низкая жаропрочность при температурах более 550-600°С, склонность к низкотемпературному радиационному охрупчиванию (НТРО) и разупрочнение в процессе нейтронного облучения при температурах более 550°С, что препятствует применению этих материалов при температуре эксплуатации перспективных быстрых реакторов ˜750°С.
Наиболее перспективными материалами оболочек тепловыделяющих элементов реакторов на быстрых нейтронах являются сплавы на основе ванадия.
Для ванадия и сплавов на его основе характерна склонность к взаимодействию с примесными оксидами и нитридами жидкометаллических теплоносителей, приводящая к деградации механических свойств, что ограничивает применение этих сплавов в условиях контакта с жидкометаллическими теплоносителями.
За прототип выбрана оболочка тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем: свинцом или натрием, содержащая металлическую трубку с торцевыми заглушками из радиационно-стойкой хромистой стали, выполненную по крайней мере из двух слоев различных металлов, в которой металлическая трубка выполнена из ванадиевого сплава системы V-Ti-Cr, покрытого с наружной и внутренней сторон нержавеющей хромистой сталью типа XI7 [Свидетельство на полезную модель №23521, МКИ G21C 3/06].
Недостатком прототипа является то, что эта оболочка не гарантирует необходимого уровня свойств тепловыделяющего элемента. Известно, что легирование титаном подавляет низкотемпературное радиационное охрупчивание. Однако, сплавы с высокой концентрацией Ti склонны к высокотемпературному охрупчиванию. Легирование хромом снижает эффект высокотемпературного охрупчивания, но увеличение содержания хрома вновь усиливает склонность сплавов к НТРО. Также в составе материала-прототипа не учтено влияние примесей на деградацию механических свойств и распухание.
Известно, что при суммарном содержании кислорода и азота менее 0,05 мас.% в указанных сплавах при нейтронном облучении усиливается распухание, а при содержании более 0,2 мас.% повышается склонность к охрупчиванию. В описании материала - прототипа также отсутствуют характеристики слоя взаимодействия основы и покрытия, определяющего работоспособность оболочки.
Задачей, на решение которой направлено предлагаемое изобретение, является повышение радиационной и коррозионной стойкости, повышение структурной стабильности, а также улучшение прочностных свойств и жаропрочности оболочки тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем.
Для решения поставленной задачи оболочка тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем содержит металлическую трубу из ванадиевого сплава, включающего также титан, хром и неизбежные примеси, с покрытием ее наружной и внутренней поверхности, выполненным из нержавеющей ферритной стали, при этом компоненты ванадиевого сплава находятся в следующем соотношении, мас.%:
причем соотношение титана к хрому выбрано в пределах от 2,2 до 1,8, а между ванадиевым сплавом и нержавеющей ферритной сталью сформирован переходный слой твердого раствора ванадиевого сплава с нержавеющей ферритной сталью толщиной от 6 до 8 мкм.
В частном варианте толщина покрытия из нержавеющей ферритной стали наружной и внутренней поверхности трубы составляет от 30 до 70 мкм.
В другом частном варианте для материала покрытия использована нержавеющая ферритная сталь типа X17 или Х26Т.
Оболочка, выполненная из материала с химическим составом основы, в котором отношение содержания главных легирующих компонентов Ti/Cr выдерживается в пределах ˜2:1, а суммарное содержание кислорода и азота в структуре металла - не менее 0,05 мас.% и не более 0,2 мас.%, обладает улучшенными характеристиками пластичности, прочности и жаропрочности.
Покрытие основы из ванадиевого сплава хромистой ферритной сталью типа X17 или Х26Т с зоной диффузионного сцепления слоев оболочки толщиной ˜6-8 мкм, представляющей собой твердый раствор компонентов ванадиевого сплава и ферритной стали, улучшает коррозионную стойкость в средах теплоносителей (натрий, литий, свинец) и в водной среде бассейна выдержки отработавших тепловыделяющих элементов.
Таким образом, показано, что существенные признаки изобретения позволяют достичь повышения комплекса характеристик, определяющих работоспособность элементов ядерных энергетических установок в жидкометаллических теплоносителях при температурах ≥750°С.
Исследование свойств материала оболочки проводилось на опытных плавках.
На фиг.1, фиг.2 и в таблице на примере сплава 12X17/V-4Ti-4Cr/12X17 показаны кратковременные механические свойства материала оболочки, соответствующие предъявляемым к нему требованиям.
На фиг.1 представлена температурная зависимость предела прочности (верхняя кривая) и предела текучести (нижняя кривая) для трехслойного материала.
На фиг.2 представлена температурная зависимость общего удлинения (верхняя кривая) и равномерного удлинения (нижняя кривая) для трехслойного материала.
На фиг.3 представлены механические свойства сплавов V-4Ti-4Cr и V-10Ti-5Cr.
На фиг.4 представлено распределение концентрации основных легирующих элементов в материале - пакете, изготовленном по разработанной технологии получения двухслойных и трехслойных материалов с использованием прочного и радиационно-стойкого ванадиевого сплава, плакированного коррозионно-стойкой ферритной нержавеющей сталью. Конечная толщина пакета, деформированного горячей прокаткой, составляет 0,4 мм. Толщина образовавшейся зоны диффузионного сцепления материалов составляет ˜6-8 мкм. Предлагаемый материал с соотношением легирующих компонентов основы Ti/Cr≈2:1 (фиг.3) по сравнению с наиболее освоенным промышленностью сплавом V-4Ti-4Cr имеет более высокие прочностные свойства, аналогичные пластические и более высокую жаропрочность (таблица).
На фиг.5 представлен вид поверхности разрушения образцов сплава V-4Ti-4Cr, испытанных в среде аргона, в котором содержалось ˜6 мас.% кислорода и азота.
Свойства хромистых сталей и сплавов ванадия зависят от состава и структуры, но по уровню многих физических свойств (теплопроводности, коэффициенту линейного расширения и, что особенно важно, по параметру термостойкости) эти материалы близки друг другу. Указанные компоненты сплава образуют с железом твердые растворы, что особенно важно также для процесса сварки.
Визуальный осмотр испытанных образцов показал, что при одних и тех же условиях испытания (скорость нагрева, скорость растяжения и др.) исследуемые образцы разрушаются одинаково с образованием шейки. Зона разрушения имеет вид косого среза под углом 45° к продольной оси, что свидетельствует о вязком разрушении,
На фиг.5 показано место разрыва образца после механических испытаний на разрыв в среде аргона. Видно, что образец, испытанный в среде аргона, также разрушается с образованием шейки под углом 45° к продольной оси. Однако, у боковой поверхности образца имеются надрывы, т.е. наблюдается небольшое растрескивание на боковой поверхности, так как с боков ванадиевый сплав не был защищен от окружающей среды, что говорит о реакции ванадиевой основы с примесями в аргоне, в котором содержится до 6 мас.% примесей кислорода и азота.
При испытаниях в вакууме растрескивания не наблюдалось, чем подтверждается обоснованность защиты ванадиевого сплава V-Ti-Cr сталью 12Х17.
Таким образом, в результате проведения всестороннего экспериментального исследования установлено, что предлагаемая оболочка позволяет обеспечить по сравнению с известными оболочками аналогичного назначения комплексное улучшение наиболее важных технологических и функциональных характеристик, которые обеспечивают высокую работоспособность элементов конструкций ядерных энергетических установок, работающих в сложных радиационных и коррозионных условиях.
название | год | авторы | номер документа |
---|---|---|---|
БЫСТРЫЙ РЕАКТОР С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ | 2011 |
|
RU2456686C1 |
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ СПЛАВОВ НА ОСНОВЕ ВАНАДИЯ | 2007 |
|
RU2360012C1 |
СПОСОБ ПОЛУЧЕНИЯ ТРЕХСЛОЙНОГО МАТЕРИАЛА СТАЛЬ Х17Н2 - V-4,9Ti-4,8Cr - СТАЛЬ Х17Н2 | 2018 |
|
RU2704945C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ АКТИВНОЙ ЗОНЫ ВОДО-ВОДЯНОГО РЕАКТОРА НА МЕДЛЕННЫХ НЕЙТРОНАХ ИЗ МАЛОАКТИВИРУЕМОЙ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ | 2009 |
|
RU2412255C1 |
СПЛАВ НА ОСНОВЕ FeCrAl ДЛЯ АТОМНЫХ РЕАКТОРОВ СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ | 2021 |
|
RU2785220C1 |
МАЛОАКТИВИРУЕМАЯ КОРРОЗИОННО-СТОЙКАЯ И РАДИАЦИОННО СТОЙКАЯ ХРОМИСТАЯ СТАЛЬ | 2006 |
|
RU2325459C2 |
ТВЭЛ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ (ВАРИАНТЫ) | 2005 |
|
RU2302044C1 |
ДИСПЕРСИОННО-УПРОЧНЕННЫЙ ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ Ni И СПОСОБ ДЛЯ ЕГО ПОЛУЧЕНИЯ | 2011 |
|
RU2543581C2 |
ТВЭЛ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ (ВАРИАНТЫ) И ОБОЛОЧКА ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ | 2003 |
|
RU2262753C2 |
Способ обработки ванадиевых сплавов | 2020 |
|
RU2751208C1 |
Изобретение относится к атомной энергетике, в частности к оболочкам тепловыделяющих элементов атомных реакторов, и предназначено для увеличения параметров работы и ресурса активной зоны реактора, обеспечения максимального выгорания ядерного топлива, повышения надежности и безопасности эксплуатации атомных электростанций. Оболочка тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем содержит металлическую трубу из ванадиевого сплава и включает титан, хром и неизбежные примеси. Наружняя и внутренняя поверхности трубки покрыты нержавеющей ферритной сталью. Компоненты ванадиевого сплава находятся в определенном соотношении. В частности соотношение титана к хрому выбрано в пределах от 2,2 до 1,8. Между ванадиевым сплавом и нержавеющей ферритной сталью сформирован переходный слой твердого раствора ванадиевого сплава с нержавеющей ферритной сталью толщиной от 6 до 8 мкм. Изобретение направлено на повышение радиационной и коррозионной стойкости, структурной стабильности, улучшение прочностных свойств и жаропрочности оболочки тепловыделяющего элемента реактора на быстрых нейтронах с жидкометаллическим теплоносителем. 2 з.п. ф-лы, 5 ил., 1 табл.
причем отношение титана к хрому выбрано в пределах от 2,2 до 1,8, а между ванадиевым сплавом и нержавеющей ферритной сталью сформирован переходный слой твердого раствора ванадиевого сплава с нержавеющей ферритной сталью толщиной от 6 до 8 мкм.
Способ получения консистентной смазки | 1930 |
|
SU23521A1 |
SU 1345917 A1, 27.09.1996 | |||
ТЕПЛОВЫДЕЛЯЮЩИЙ ЭЛЕМЕНТ ЯДЕРНОГО РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ | 2003 |
|
RU2241266C1 |
АУСТЕНИТНАЯ СТАЛЬ | 1994 |
|
RU2068022C1 |
МАНИПУЛЯТОР "ЧЕРЕПАХА ПРОХОРОВА" | 1999 |
|
RU2180134C2 |
1972 |
|
SU416313A1 |
Авторы
Даты
2008-08-20—Публикация
2006-10-09—Подача