ТЕПЛОПАРОГЕНЕРАТОР Российский патент 2008 года по МПК F24J3/00 

Описание патента на изобретение RU2332619C1

Изобретение относится к теплотехнике, а именно к теплопарогенераторам, и может быть использовано для теплоснабжения помещений различного назначения, приспособленных для парового отопления, для нужд тех отраслей промышленности и жизнедеятельности человека, где используется пар.

Известно устройство для нагрева жидкости, представляющее собой нагревательный модуль (см. патент RU 2290573, F24J 3/00, 27.12.2006 г., бюл. N36), взятое за прототип. Нагревательный модуль выполнен в виде корпуса-статора с цилиндрической полостью и установленного с зазором в эту полость диска-ротора с глухими отверстиями, выполненными на цилиндрической поверхности и торцах диска, и с подобными отверстиями на противолежащих поверхностях статора, имеющего входной канал для жидкости от подающей системы и выходной канал, связанный с распределяющей системой через преобразователь для обеспечения парообразования.

Недостатками прототипа являются недостаточное использование функциональных возможностей устройства и недостаточная теплопроизводительность.

Предлагаемым изобретением решается задача: повышение теплопроизводительности при более высоком использовании функциональных возможностей теплопарогенератора.

Предлагаемое изобретение направлено на достижение технического результата, заключающегося в повышении эффективности нагрева жидкости, превращении ее в пар с дальнейшей подготовкой пара к отправке потребителю.

Указанный технический результат достигается тем, что в предлагаемом теплопарогенераторе, состоящем из нагревательного модуля в виде статора с цилиндрической полостью и установленного с зазором в эту полость ротора, представляющего собой закрепленный на вале диск, с выполненными глухими отверстиями на цилиндрической поверхности и торцах ротора-диска и с подобными отверстиями на противолежащих поверхностях статора, имеющего отверстие входного канала для жидкости от подающей системы и отверстие выходного канала, связанное с распределяющей системой через преобразователь для обеспечения парообразования, новым является то, что теплопарогенератор снабжен набором преобразователей, внутренняя поверхность которых выполнена в форме сопла Лаваля, причем все преобразователи в наборе имеют различные диаметры критического сечения dкр и различные соотношения диаметров выходного и входного отверстий dвых/dвх.

Преобразователь, соосно установленный с выходным каналом для отвода жидкости, является основным элементом, влияющим на эффективность процесса перехода жидкости в пар. Это обусловлено тем, что к выходному отверстию жидкость поступает максимально нагретой в зазоре между внутренними поверхностями статора и поверхностями вращающегося диска. Проходное сечение преобразователя выполнено с диаметром, меньшим чем входное отверстие канала для подвода жидкости, что обеспечивает дросселирование нагретого однокомпонентного потока жидкости, сопровождающееся изменением его агрегатного состояния с переходом из однофазного состояния в двухфазное. При этом основным фактором, влияющим на эффективность теплопарообразования, является процесс перехода жидкости в пар в сопле Лаваля, в форме которого выполнена внутренняя поверхность преобразователя. В критическом (минимальном) сечении патрубка dкр происходит "запирание" жидкости по расходу и давлению, поэтому перегрев двухфазной смеси возрастает, что приводит к образованию течения вскипающей (самоиспаряющейся) жидкости через сужающее устройство, из которых наиболее эффективным, в данном случае, является сопло Лаваля. Таким образом, полученный пар имеет высокие потребительские показатели. Причем поверхность, выполненная в форме сопла Лаваля, имеет меньшее гидравлическое сопротивление по сравнению с различными дроссельными насадками, что позволяет сократить непроизводительные затраты на прокачивание жидкости и пара.

Диаметр критического сечения dкр и соотношение диаметров выходного и входного отверстий dвых/dвх преобразователя могут изменяться и подбираются для конкретных условий потребления пара. При изменении данных параметров происходит изменение скорости парообразования, а также его качественных показателей.

Технические решения с признаками, отличающими заявляемое решение от прототипа, не известны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Сущность изобретения поясняется чертежами, где на

фиг.1 изображен теплопарогенератор, общий вид;

фиг.2 изображена внутренняя поверхность преобразователя (сопло Лаваля);

фиг.3 изображен теплопарогенератор, общий вид схемы подключения.

Теплопарогенератор состоит из нагревательного модуля 1, соединенного с преобразователем 2 для обеспечения парообразования. Нагревательный модуль выполнен в виде статора 3 с цилиндрической полостью 4 и ротора 5, расположенного с зазором в этой полости. Ротор 5 установлен с возможностью вращения и представляет собой жестко закрепленный на валу 6 диск. Вал зафиксирован в подшипниковой опоре 7, уплотнен торцевым уплотнением 8 и через муфту 9 соединен с электродвигателем 10. На цилиндрической поверхности и торцах ротора-диска 5 и противолежащих поверхностях статора 3 выполнены глухие отверстия 11, а сквозные отверстия 12 на роторе 5 выполнены в непосредственной близости от вала 6. Отверстие входного канала 13 для жидкости от подающей системы размещено соосно с валом 6 на торцевой поверхности статора 3. Отверстие выходного канала 14 связано с распределяющей системой через преобразователь 2 для обеспечения парообразования и выполнено в цилиндрической стенке статора 3. Подающая система состоит из редукционного клапана 15, обратного клапана 16, бака-деаэратора 17 и нагнетательного насоса 18, а распределяющая система состоит из ограничительного термостата 19, ограничительного прессостата 20, сепаратора 21, конденсатоотводчика 22, редукционного клапана 23. Для регулирования частоты вращения электродвигателя 10, от которой зависит эффективность процесса парообразования, служит шкаф автоматического управления 24.

Теплопарогенератор работает следующим образом. Холодная вода из сети через редукционный клапан 15 и клапан обратный 16 поступает в бак-деаэратор 17. При помощи редукционного клапана 15 регулируется давление воды, поступающей в бак-деаэратор 17. Из бака-деаэратора 17 посредством нагнетательного насоса 18 вода под давлением подается к отверстию входного канала 13 для подвода жидкости нагревательного модуля 1. Включается электродвигатель 10. Вращение с него через муфту 9 передается на вал 6 с ротором-диском 5. Далее за счет сил трения в жидкости при включенном электродвигателе 10 между внутренними поверхностями статора и торцевыми и цилиндрическими поверхностями ротора 5 за счет разрыва сплошного потока жидкости в зонах вихревых образований в областях глухих отверстий 11 происходят активные процессы тепловыделения. Сквозные отверстия 12 служат для обеспечения поступления потока нагреваемой жидкости в зазор между противоположной торцевой поверхностью статора 3 и торцевой поверхностью ротора-диска 5. Через отверстие выходного канала 14 для отвода жидкости нагретая вода попадает в преобразователь 2, выполненный в форме сопла Лаваля. В преобразователе 2 происходит наиболее эффективный процесс парообразования. В дальнейшем пар попадает в сепаратор 21, где происходит отделение от пара остатков влаги. Ограничительный термостат 19, ограничительный прессостат 20, установленные в магистрали, соединяющей преобразователь 2 и сепаратор 21, служат для защиты термопарогенератора соответственно от перегрева и превышения давления. Сухой пар через верхнюю часть сепаратора 21 поступает к потребителю, а отделенная вода направляется через конденсатоотводчик 22 обратно в бак-деаэратор 17. Давление пара, поступающего в сеть, регулируется с помощью редукционного клапана 23.

Регулирование количества выработанного пара в соответствии с его реальным расходом осуществляется за счет изменения числа оборотов электродвигателя путем изменения частоты его вращения, которая регулируется шкафом автоматического управления 24. При изменении числа оборотов электродвигателя скорость нагревания жидкости в зазоре между внутренними поверхностями статора и поверхностями вращающегося диска соответственно изменяется в большую или меньшую сторону.

Похожие патенты RU2332619C1

название год авторы номер документа
СИЛОВОЙ ПАРОГЕНЕРАТОРНЫЙ АГРЕГАТ 2007
  • Маринин Михаил Геннадьевич
  • Мосалёв Сергей Михайлович
  • Наумов Виктор Иванович
  • Сыса Виктор Павлович
RU2350770C1
ТЕПЛОПАРОГЕНЕРАТОР ПРИВОДНОЙ КАВИТАЦИОННЫЙ 2006
  • Воробьев Станислав Алексеевич
  • Лавро Николай Михайлович
  • Корнилов Георгий Михайлович
  • Шабанов Данила Владимирович
RU2362947C2
ПРОТОЧНЫЙ НАГРЕВАТЕЛЬ РОТОРНОГО ТИПА 2014
  • Юдин Александр Илларионович
  • Буряк Григорий Алексеевич
RU2632021C2
УСТРОЙСТВО ДЛЯ НАГРЕВА ЖИДКОСТИ 2005
  • Мосалев Сергей Михайлович
  • Наумов Виктор Иванович
  • Сыса Виктор Павлович
RU2290573C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПАРА 2016
  • Архипов Александр Петрович
  • Горякин Владимир Николаевич
RU2633725C1
ТЕПЛОПАРОГЕНЕРАТОР 2003
  • Тимирязев О.Б.
RU2247280C1
ТЕПЛОПАРОГЕНЕРАТОР 2001
  • Тимирязев О.Б.
RU2206818C1
ГЕНЕРАТОР ЭЛЕКТРИЧЕСКОГО ТОКА НА ПОТОКЕ ПЛАЗМЫ 2015
  • Трифанов Иван Васильевич
  • Казьмин Богдан Николаевич
  • Трифанов Владимир Иванович
  • Оборина Людмила Ивановна
RU2597205C1
ТЕПЛОПАРОГЕНЕРАТОР 2005
  • Кочуров Александр Геннадьевич
RU2277681C1
ТЕПЛОПАРОГЕНЕРАТОР 2003
  • Тимирязев О.Б.
RU2251640C1

Иллюстрации к изобретению RU 2 332 619 C1

Реферат патента 2008 года ТЕПЛОПАРОГЕНЕРАТОР

Изобретение относится к теплотехнике, а именно к теплопарогенераторам, и может быть использовано для теплоснабжения помещений различного назначения. Технический результат - повышение эффективности нагрева жидкости и превращения ее в пар. Для решения поставленной задачи теплопарогенератор содержит нагревательный модуль в виде статора с цилиндрической полостью и установленный с зазором в эту полость ротор, представляющий собой закрепленный на валу диск, с выполненными глухими отверстиями на цилиндрической поверхности и торцах. Статор содержит подобные отверстия на противолежащих поверхностях и имеет отверстие входного канала для жидкости от подающей системы и отверстие выходного канала, связанное с распределяющей системой через преобразователь для обеспечения парообразования. Теплопарогенератор снабжен набором преобразователей, внутренняя поверхность которых выполнена в форме сопла Лаваля, причем все преобразователи в наборе имеют различные диаметры критического сечения dкр и различные соотношения диаметров выходного и входного отверстий dвых/dвх. 3 ил.

Формула изобретения RU 2 332 619 C1

Теплопарогенератор, состоящий из нагревательного модуля в виде статора с цилиндрической полостью и установленного с зазором в эту полость ротора, представляющего собой закрепленный на валу диск, с выполненными глухими отверстиями на цилиндрической поверхности и торцах ротора-диска и с подобными отверстиями на противолежащих поверхностях статора, имеющего отверстие входного канала для жидкости от подающей системы и отверстие выходного канала, связанное с распределяющей системой через преобразователь для обеспечения парообразования, отличающийся тем, что теплопарогенератор снабжен набором преобразователей, внутренняя поверхность которых выполнена в форме сопла Лаваля, причем все преобразователи в наборе имеют различные диаметры критического сечения dкр и различные соотношения диаметров выходного и входного отверстий dвых/dвх.

Документы, цитированные в отчете о поиске Патент 2008 года RU2332619C1

ГИДРОМЕХАНИЧЕСКИЙ ТЕПЛОВОЙ ГЕНЕРАТОР 2005
  • Адаменко Николай Васильевич
  • Дударев Лев Захарович
  • Кива Анатолий Иванович
  • Кремнев Александр Геннадиевич
RU2269727C1
УСТРОЙСТВО ДЛЯ НАГРЕВА ЖИДКОСТИ 2005
  • Мосалев Сергей Михайлович
  • Наумов Виктор Иванович
  • Сыса Виктор Павлович
RU2290573C1
СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ, УСТРОЙСТВО ДЛЯ ЕЕ ПОЛУЧЕНИЯ И СИСТЕМА УПРАВЛЕНИЯ УСТРОЙСТВОМ 2004
  • Корсаков Александр Иванович
RU2280823C2
СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ 1993
  • Кладов Анатолий Федорович
RU2054604C1
УСТРОЙСТВО для ИЗМЕРЕНИЯ ДЛИТЕЛЬНОСТИ ПОВТОРЯЮЩИХСЯ ИМПУЛЬСОВ 0
  • Изобретен
SU176612A1

RU 2 332 619 C1

Авторы

Мосалёв Сергей Михайлович

Наумов Виктор Иванович

Сыса Виктор Павлович

Даты

2008-08-27Публикация

2007-02-12Подача