УСТРОЙСТВО ТЕСТИРОВАНИЯ ГАЗОАНАЛИТИЧЕСКИХ ПРИБОРОВ КОНТРОЛЯ ОТРАВЛЯЮЩИХ ВЕЩЕСТВ В ВОЗДУШНОЙ СРЕДЕ Российский патент 2008 года по МПК G01N27/00 

Описание патента на изобретение RU2333480C1

Изобретение относится к измерительной технике, а именно - к способам и устройствам обеспечения работоспособности газоанализаторов. Кроме того, она относится к области анализа воздушной среды путем определения ее химических и физических свойств.

Известно устройство для обеспечения работоспособности газоанализатора (патент РФ № 2221240 от 01.10.2004 «Способ обеспечения работоспособности газоанализатора», МПК G01N 27/00). В нем на электрохимическом датчике закрепляют термоэлектрический модуль Пельтье и на пути воздушного потока газа - датчики температуры. При этом измеряют температуру электрохимического датчика и газа и по разности температур посредством устройства обработки информации, контроллера и усилителя вырабатывают управляющее воздействие на термоэлемент Пельтье, пропорциональное направлению и силе тока через термоэлемент Пельтье, который в зависимости от направления тока нагревает или охлаждает электрохимический датчик.

Недостатком данного устройства и устройств данного типа является то, что работоспособность газоанализаторов проверяется только в процессе работы.

Однако при работе с отравляющими веществами (ОВ) необходимо первоначально убедиться в работоспособности измеряемого устройства, например, с помощью использования имитатора. Как правило, в качестве рабочего тела для имитаторов используют нетоксичные соединения.

Однако для достоверного подтверждения работоспособности газоаналитических средств непосредственно на местах их размещения на объектах по уничтожению химического оружия необходимо использовать парогазовые смеси, содержащие реальные образцы ОВ.

Решение данной задачи может быть достигнуто при разработке и создании компактного переносного устройства, способного создавать парогазовые смеси ОВ заданного состава. При этом концентрации отравляющих веществ в парогазовых смесях должны соответствовать пороговым уровням концентрации проверяемых газоаналитических приборов.

В связи с этим необходимо разработать устройство для подтверждения работоспособности приборов контроля ОВ непосредственно перед проведением измерений на местах установки в рабочей зоне объектов по уничтожению химического оружия. Дозаторы, использующие способ равномерного испарения жидкости в поток газа-носителя, по своему назначению и характеру решаемых задач являются наиболее предпочтительными.

В качестве такого устройство может быть предложен дозатор, который обеспечивает оперативный и качественный контроль изменения свойств парогазовых смесей в процессе дозирования ОВ (патент РФ № 2280246 «Капиллярный дозатор парогазовых смесей», МПК G01N 1/22 от 20.07.2006).

Данный дозатор состоит из смесительной камеры с подводящим и отводящим штуцерами, камеры испарителя с дозируемым веществом и капилляра. Испарительная камера с дозируемым веществом выполнена в виде цилиндрической стеклянной виаллы со сменными насадками и капиллярами различного проходного сечения для создания парогазовых смесей с различной летучестью в широком диапазоне концентраций и образует со смесительной камерой разъемное соединение. Преимуществом предлагаемого капиллярного дозатора парогазовых смесей является возможность оперативного и качественного контроля как изменения свойств вещества в процессе дозирования, так и количества дозируемого вещества в единицу времени для веществ широкого спектра летучести.

Однако для создания паровоздушной смеси с заданной концентрацией с другими дозируемыми веществами необходимо или подсоединить другую виаллу с этим веществом или залить в имеющуюся виаллу новое дозируемое вещество, одновременно заменив насадку с требуемым для этого вещества капилляром.

Получение парогазовых смесей ОВ путем испарения ОВ из его жидкой фазы в поток газа-носителя является нежелательным. Это обусловлено тем, что использование в разрабатываемом устройстве ОВ в чистом виде накладывает особые меры по соблюдению правил техники безопасности при эксплуатации устройства, а также существенно усложняет процедуру подтверждения работоспособности приборов контроля ОВ непосредственно на местах установки в рабочей зоне. Кроме того, при испарении ОВ из его жидкой фазы в газ-носитель получаемая парогазовая смесь будет иметь высокую концентрацию ОВ, что влечет за собой использование дополнительных систем разбавления. Попадание ОВ в окружающую среду даже малой концентрации вредно для окружающих. Для придания дозатору эжекционных свойств необходимо подавать газ-носитель под большим давлением, что связано с созданием большого объема парогазовых смесей на основе ОВ в процессе проверки газоанализаторов.

Поэтому в основу конструкции устройства для подтверждения работоспособности приборов контроля ОВ непосредственно на местах их установки в рабочей зоне должен быть положен способ равномерного испарения жидкости в поток газа-носителя. При использовании данного метода всегда устанавливается динамическое равновесие между поверхностью ОВ и газом, заканчивающееся созданием парогазовых смесей заданной концентрации.

Наиболее близким по принципу действия и технической сущности для дозатора парогазовых смесей к заявляемому устройству является дозирующая ячейка Кэмба, основанная на испарении жидкостей с поверхности, реализующая динамический метод получения парогазовых смесей путем карбюрации (Д.К.Колеров «Метрологические основы газоаналитических измерений». - М., Изд-во Комитета стандартов, мер и измерительных приборов, 1967, рис.77, с.227).

Этот метод был разработан Кэмбом, Лабардином, Мейром и Ваухером и заключается в испарении некоторого количества жидкости в поток газа-носителя. Основная часть прибора - испаритель. Сам прибор состоит из трубки высотой 600 мм, в нижней части которой находится выпариваемая жидкость. Внутрь трубки помещен цилиндр из плотной и особо пористой бумаги. Газ-носитель поступает по центральной трубке, нижний конец которой находится в 1 см над поверхностью жидкости. Газ-носитель из трубки проходит вдоль стенок пористой бумаги, насыщается парами смачивающей ее жидкости и выходит из трубки. Таким образом, работа данного дозирующего устройства основана на испарении жидкости с поверхности в поток движущегося вдоль этой поверхности газа.

Однако для данного устройства характерны следующие недостатки:

- неудобство замены фильтровальной бумаги и заливки OB, что требует соблюдения повышенных мер безопасности;

- некачественное смешение, т.к. смачиваемость бумаги переменна по высоте.

Кроме того, для всех перечисленных устройств характерным является возможность заражения окружающей среды.

Задачей изобретения является улучшение качества смесеобразования при подготовке рабочей смеси малой концентрации на основе реальных OB и повышение безопасности при работе с OB.

Технический результат, который может быть получен при использовании изобретения, заключается в создании компактного переносного устройства для проверки исправности и работоспособности газоаналитических приборов на объектах по уничтожению химического оружия.

Поставленная задача достигается тем, что устройство для проверки работоспособности приборов контроля отравляющих веществ содержит корпус с узлами крепления, уплотнения и крышку, входной и выходной трубопроводы с штуцерами и дозатор. При этом дозатор представляет собой поглотитель Петри, входная центральная трубка которого заканчивается торцевой шаровой поверхностью со сквозными отверстиями и соединяется с входным трубопроводом, а боковая трубка через фильтр - с выходным трубопроводом.

На фиг.1 представлен чертеж устройства, на фиг.2 - внешний вид дозатора и на фиг.3 - схема его подсоединения и на фиг.4 - внешний вид устройства,

где 1 - корпус устройства;

2 - основание корпуса устройства;

3 - крышка устройства;

4 - ручка для переноски;

5 - дозатор;

6 - трубка соединительная фторопластовая;

7 - фильтр;

8 - штуцер входной;

9 - штуцер выходной.

Устройство состоит из корпуса 1 с основанием 2 и крышки 3 с ручкой 4, дозатора 5, трубок соединительных фторопластовых 6, фильтра 7, трубки подключения фильтра к газовым магистралям газосигнализатора, входного 8 и выходного 9 штуцеров.

Корпус 1 устройства предназначен для размещения и защиты дозатора 5 от внешних механических воздействий. Дозатор 5 является генератором парогазовой смеси и предназначен для получения парогазовой смеси ОВ. Получение парогазовой смеси ОВ осуществляется путем пропускания воздушного потока через дозатор 5, заполненный определенным количеством рабочего раствора ОВ. Основание 2 корпуса предназначено для обеспечения надежной устойчивости устройства, а также для крепления его некоторых составных элементов. Крышка 3 предназначена для облегчения доступа к внутренним элементам устройства при выполнении операций по его снаряжению и расснаряжению. Фильтр 7 предназначен для поглощения остаточных количеств ОВ, выбрасываемых устройством после проведения анализа пробы из устройства. Трубка фторопластовая 6 предназначена для подключения устройства к испытываемому газосигнализатору. Ручка для переноски предназначена для транспортировки устройства.

Принцип действия устройства заключается в следующем. При подключении устройства к воздухозаборной магистрали газосигнализатора отбор пробы воздуха осуществляется через дозатор 5 устройства. При этом воздушный поток, поступающий в газосигнализатор, первоначально проходит через входной штуцер 8 устройства и поступает в дозатор 5. Во внутреннем объеме дозатора 5 происходит барбатирование рабочего раствора ОВ и, как следствие, образование парогазовой смеси. Выполнение шаровой поверхности со сквозными отверстиями на торцевой части центральной трубки способствует повышению насыщения воздуха парами ОВ, т.е. способствует интенсивности перемешивания.

Полученная таким образом парогазовая смесь направляется в выходной штуцер 8 устройства и далее посредством фторопластовой трубки подается к пробоотборным магистралям газосигнализатора.

Длительный срок эксплуатации устройства обеспечивается тем, что все составные элементы устройства изготавливаются из химически стойких материалов, что позволяет проводить многократные циклы дегазации устройства дегазирующими рецептурами, применяемыми на объекте по уничтожению химического оружия. Высокая безопасность устройства при эксплуатации обеспечивается надежной защитой дозатора 5 от повреждения, герметизацией внутреннего объема устройства, а также техническими решениями, примененными в конструкции устройства, которые исключают возможность попадания рабочего раствора ОВ как в газовые коммуникации газосигнализатора, так и во внешнюю среду.

Как следует из фиг.1, дозатор 5 размещен во внутреннем пространстве корпуса устройства, что обеспечивает надежную защиту генератора от внешних механических воздействий. Свободное внутреннее пространство корпуса устройства полностью заполняется активированным углем марки БАУ. Активированный уголь предназначен для поглощения рабочего раствора в случае нарушения целостности корпуса дозатора 5. Кроме того, активированный уголь осуществляет фиксацию корпуса дозатора 5 при эксплуатации устройства.

Поглощение остаточных количеств ОВ, выбрасываемых газосигнализаторами после проведения анализа пробы из устройства, осуществлялось фильтром 7.

Герметичность внутреннего пространства устройства достигается за счет применения в конструкции устройства уплотнительной прокладки, выполненной из химически стойкой резины, а также входного 8 и выходного 9 штуцеров специальной конструкции, снабженных заглушками.

Таким образом, конструкция устройства для подтверждения работоспособности приборов контроля ОВ непосредственно на местах их установки в рабочей зоне объектов по уничтожению химического оружия соответствует предъявляемым требованиям к ним. Данное устройство является компактным, переносным и безопасным в эксплуатации.

Похожие патенты RU2333480C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ПРОВЕРКИ РАБОТОСПОСОБНОСТИ ГАЗОВЫХ СИГНАЛИЗАТОРОВ 2007
  • Шебанов Николай Павлович
  • Мандыч Владимир Григорьевич
  • Меркулов Павел Тимофеевич
  • Левшов Игорь Александрович
  • Конешов Сергей Александрович
  • Фомичев Сергей Владимирович
  • Федорец Николай Васильевич
RU2333479C1
КАПИЛЛЯРНЫЙ ДОЗАТОР ПАРОГАЗОВЫХ СМЕСЕЙ 2004
  • Шебанов Николай Павлович
  • Мандыч Владимир Григорьевич
  • Левшов Игорь Александрович
  • Конешов Сергей Александрович
  • Фомичев Сергей Владимирович
  • Меринова Наталья Владимировна
  • Федорец Николай Васильевич
RU2280246C1
ГАЗОДИНАМИЧЕСКИЙ ИСПЫТАТЕЛЬНЫЙ СТЕНД 2005
  • Шебанов Николай Павлович
  • Мандыч Владимир Григорьевич
  • Левшов Игорь Александрович
  • Конешов Сергей Александрович
  • Фомичев Сергей Владимирович
  • Федорец Николай Васильевич
RU2284498C1
ИСПЫТАТЕЛЬНЫЙ СТЕНД ДЛЯ СОЗДАНИЯ ПАРОГАЗОВЫХ И ПАРОАЭРОЗОЛЬНЫХ СМЕСЕЙ С ЗАДАННОЙ КОНЦЕНТРАЦИЕЙ 2001
  • Алимов Н.И.
  • Яковлев А.В.
  • Полякова Г.Ю.
  • Седунов С.Г.
  • Елизаров А.В.
  • Прытков А.С.
  • Румянцев А.Б.
RU2219516C2
СПОСОБ ПОЛУЧЕНИЯ ГРАДУИРОВОЧНЫХ ПАРОГАЗОВЫХ СМЕСЕЙ 1998
  • Конопелько Л.А.
  • Котов Г.Н.
  • Кустиков Ю.А.
RU2153158C1
РЕГУЛИРУЕМЫЙ КАПИЛЛЯРНЫЙ ДОЗАТОР МИКРОПОТОКА ПАРОГАЗОВЫХ СМЕСЕЙ 2016
  • Моденков Евгений Юрьевич
  • Михайличенко Александр Владимирович
  • Михайличенко Владислав Александрович
  • Малков Роман Александрович
  • Климов Александр Сергеевич
RU2721719C2
УНИВЕРСАЛЬНАЯ СИСТЕМА ХИМИЧЕСКОГО АНАЛИЗА ДЛЯ ГАЗОВОЙ ХРОМАТОГРАФИИ (УСХА-ГХ), УСТРОЙСТВО КРАНА-ДОЗАТОРА И ДЕТЕКТОРА ПЛОТНОСТИ ГАЗОВ 2011
  • Пасмурнов Николай Александрович
RU2480744C2
УНИВЕРСАЛЬНЫЙ АНАЛИЗАТОР ПАРОГАЗОВЫХ ПРОБ И ЖИДКОСТЕЙ И ВЕЩЕСТВ НА ПОВЕРХНОСТИ (ВАРИАНТЫ) 2013
  • Пасмурнов Николай Александрович
RU2526599C1
Диффузионный микродозатор 1981
  • Попов Александр Александрович
  • Мерсов Александр Семенович
SU993033A1
ЭЖЕКТОРНАЯ УСТАНОВКА 2004
  • Бордаков В.Н.
  • Бура А.Н.
RU2262369C1

Иллюстрации к изобретению RU 2 333 480 C1

Реферат патента 2008 года УСТРОЙСТВО ТЕСТИРОВАНИЯ ГАЗОАНАЛИТИЧЕСКИХ ПРИБОРОВ КОНТРОЛЯ ОТРАВЛЯЮЩИХ ВЕЩЕСТВ В ВОЗДУШНОЙ СРЕДЕ

Изобретение относится к измерительной технике, а именно - к устройствам обеспечения работоспособности газоанализаторов. Устройство для проверки работоспособности приборов контроля отравляющих веществ содержит корпус с узлами крепления, уплотнения и термостатирования и крышку, входной и выходной трубопроводы со штуцерами и дозатор. Дозатор представляет собой поглотитель Петри, входная центральная трубка которого заканчивается торцевой шаровой поверхностью со сквозными отверстиями и соединяется с входным трубопроводом, а боковая трубка через фильтр - с выходным трубопроводом. Данное устройство является компактным, переносным и безопасным в эксплуатации, в том числе и для проверки исправности и работоспособности газоаналитических приборов на объектах по уничтожению химического оружия. 4 ил.

Формула изобретения RU 2 333 480 C1

Устройство тестирования газоаналитических приборов контроля отравляющих веществ в воздушной среде, содержащее корпус с узлами крепления, уплотнения и с крышкой, входной и выходной трубопроводы с штуцерами и дозатор, отличающееся тем, что дозатор представляет собой поглотитель Петри, входная центральная трубка которого заканчивается торцевой шаровой поверхностью со сквозными отверстиями и соединяется с входным трубопроводом, а боковая трубка через фильтр - с выходным трубопроводом.

Документы, цитированные в отчете о поиске Патент 2008 года RU2333480C1

Устройство для поверки газоанализаторов 1985
  • Голий Владимир Евгеньевич
  • Жерновой Владимир Иванович
  • Михайлюк Николай Тарасович
  • Мусиенко Владимир Алексеевич
  • Назаренко Владимир Иванович
  • Тумко Николай Федорович
SU1334064A1
Дозатор для поверки газоанализаторов 1978
  • Савельев Виталий Александрович
SU728117A1
Динамический дозатор для получения парогазовых смесей 1972
  • Голиков Юрий Михайлович
  • Шкондин Виктор Петрович
  • Мельников Владимир Михайлович
  • Степанов Эдуард Никитович
  • Немчинов Виталий Викторович
SU465553A1
Электрохимический дозатор газа 1984
  • Гохфельд Юзеф Исаакович
  • Рылов Владимир Аркадьевич
  • Яковлев Александр Николаевич
SU1170277A1
Приспособление к крутильным ватерам для прекращения питания при обрыве нити 1933
  • Пышкин Н.Г.
SU35014A1
СПОСОБ ПОЛУЧЕНИЯ ПОВЕРОЧНЫХ ГАЗОВЫХ СМЕСЕЙ ДЛЯ ГРАДУИРОВКИ И ПОВЕРКИ ГАЗОАНАЛИЗАТОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Белошицкий Анатолий Петрович
RU2290635C1

RU 2 333 480 C1

Авторы

Мандыч Владимир Григорьевич

Меркулов Павел Тимофеевич

Левшов Игорь Александрович

Конешов Сергей Александрович

Фомичев Сергей Владимирович

Федорец Николай Васильевич

Даты

2008-09-10Публикация

2007-03-12Подача