СПОСОБ ПРОИЗВОДСТВА ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ Российский патент 2008 года по МПК C21C7/06 

Описание патента на изобретение RU2334797C2

Изобретение относится к сталеплавильному производству и может быть использовано в технологии получения легированной стали, содержащей ванадий.

Для получения легированных сталей используют различные процессы (мартеновский, кислородно-конвертерный, электросталеплавильный), которые достаточно подробно рассмотрены, например, в книге В.Г.Воскобойникова и др. Общая металлургия, М., Металлургия, 1995, ч.II, гл.2, 3 и 4.

Легирующие элементы вводят в металл в виде ферросплавов. Ванадий, в частности, вводят присадкой в ковш феррованадия; обязательной частью технологии получения легированной стали является внепечная обработка и почти всегда - вакуумирование. Способы производства такой стали по одному и тому же процессу могут отличаться отдельными своими параметрами.

Известен способ производства легированной стали, содержащей молибден, включающий выплавку и выпуск расплава в ковш, при котором в качестве молибденосодержащих материалов используют молибденовый концентрат, вводимый в ковш в виде брикетов заданной плотности при заполнении расплавом определенного объема ковша (см. а.с. СССР №1601135, кл. С21С 7/06, 5/28, опубл. в БИ №39, 1990). Однако эта технология непригодна для получения ванадийсодержащей стали.

Аналогом к заявляемому объекту является способ производства ванадийсодержащей стали по а.с. СССР №1323579, кл. С21С 7/06, опубл. в БИ №26, 1987.

Этот способ включает выпуск расплава из сталеплавильного агрегата в ковш, в который предварительно введен феррованадий и в процессе выпуска 1/5...1/2 расплава в его поток вводят ферросилиций и силикомарганец, и характеризуется тем, что в расплав вводят дополнительно до присадки ферросилиция и силикомарганца 0,5...2,5 кг/т силикоциркония и 0,5...2,5 кг/т силикокальция, а алюминий вводят в два приема.

По этой технологии в кислородно-конвертерном процессе, как показали опыты (см. ниже), невозможно получение качественной ванадийсодержащей стали, отвечающей всем требованиям потребителей.

Наиболее близким аналогом по количеству совпадающих признаков является способ получения микролегированной ванадием и азотом полуспокойной стали, известный из RU 2069232 C1, C21C 7/06, 20.11.1996. Данный способ включает нагрев расплава металла в сталеплавильном агрегате, выпуск расплава в ковш, ввод в расплав по ходу выпуска раскислителей, легирующих ванадийсодержащей и азотсодержащей добавок, продувку расплава инертным газом. Ванадий вводится присадкой в ковш ванадиевого шлака.

Недостатком данного способа является использование ванадиевого шлака для легирования ванадием из-за низкого содержания в нем ванадия и использование азотсодержащих добавок, что не позволяет получать качественную легированную сталь с заданными требованиями к структуре и механическим свойствам. Так как содержание ванадия в этих сталях больше, а азот является вредной примесью.

Технической задачей настоящего изобретения является получение качественной ванадийсодержащей стали. Технический результат - получение ванадийсодержащей стали, соответствующей требованиям, предъявляемым к структуре и механическим свойствам.

Указанный технический результат достигается тем, что в предлагаемом способе производства ванадийсодержащей стали, включающем выпуск расплава из сталеплавильного агрегата в ковш, введение в расплав легирующих элементов и продувку его инертным газом, согласно изобретению перед продувкой расплава в ковше инертным газом в него вводят ванадий в виде феррованадия в количестве ванадия 0,001-0,0018 от массы расплава в ковше, во время продувки инертным газом осуществляют корректировку химического состава, после продувки инертным газом его подвергают вакуумированию на циркуляционном вакууматоре с коэффициентом циркуляции 4,5...8,0 и с остаточным разряжением в нем не более 3 мм рт.ст.

Приведенные числовые параметры технологии получены опытным путем и являются эмпирическими.

Сущность предлагаемого технического решения заключается в оптимизации количества вводимого в ковш ванадия, в определенном порядке отдельных операций, в степени вакуумирования стали, выраженной в конкретизации коэффициента циркуляции и остаточного давления в вакууматоре. Это позволяет получить кислородно-конвертерным процессом легированную ванадийсодержащую сталь, обладающую высокими качественными показателями.

Опытную проверку заявляемого способа осуществляли при выплавке стали в кислородно-конвертерном цехе ОАО «Магнитогорский металлургический комбинат». С этой целью в опытах варьировали параметры процесса, оценивая результаты по качеству получаемой стали: по микроструктуре и мехсвойствам проката из нее.

Наилучшие результаты (99,3...99,7% металла полностью соответствовали всем предъявляемым требованиям) получены при реализации предлагаемой технологии. Отклонения от ее оптимальных параметров ухудшали достигнутые показатели.

Так, при общем качестве вводимого в ковш феррованадия менее 0,0010 от массы расплава в ковше не обеспечивается заданное содержание ванадия в стали по нижнему пределу. В то же время при величине указанного количества более 0,0018, не обеспечивается заданное содержание ванадия в стали по верхнему пределу.

Отсутствие вакуумирования расплава после продувки и корректировки химсостава стали, а также вакуумирование с коэффициентом циркуляции менее 4,5 снизили выход качественной стали соответственно на 35...40% и на 1,5...2,0%. Также снизился выход качественной стали при остаточном разряжении в вакууматоре более 3 мм рт. ст. Увеличение коэффициента циркуляции (более 8,0) не повысило существенно уровень качества получаемой стали, но привело к удлинению технологического процесса и увеличению производственных затрат.

Опытная проверка подтвердила возможность получения по заявляемому способу качественной ванадийсодержащей стали.

Контрольная выплавка стали с использованием технологии, взятой в качестве ближайшего аналога (см. выше), показала невозможность производства с ее помощью высококачественной ванадийсодержащей стали, получаемой в кислородном конвертере.

Таким образом, опытная проверка доказала приемлемость найденного технического решения для достижения поставленной цели и его преимущество перед известным объектом.

По данным технико-экономических исследований, проведенных в Центральной лаборатории ОАО «ММК», использование заявляемого способа позволит повысить выход ванадийсодержащей стали высокого качества, получаемой кислородно-конвертерным процессом с увеличением прибыли от ее реализации ориентировочно на 15%.

Пример конкретного выполнения

Ванадийсодержащая сталь выплавляется в кислородном конвертере. В начале внепечной обработки в сталеразливочный ковш вводят феррованадий в количестве 0,0015 от массы расплава в ковше, что обепечивает получение ванадия в готовой стали 0,093-0,096%

Во время продувки инертным газом осуществляют корректировку химического состава стали, после окончания продувки инертным газом ее подвергают вакуумированию на циркуляционном вакууматоре с коэффициентом циркуляции 6,0 и с остаточным разряжением в нем 2,5 мм рт. ст.

Механические свойства и структура металла, полученного по предлагаемому способу, соответствуют предъявляемым требованиям на 99,3...99,7%.

Похожие патенты RU2334797C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА КОНВЕРТЕРНОЙ СТАЛИ 2006
  • Сеничев Геннадий Сергеевич
  • Дьяченко Виталий Федорович
  • Захаров Игорь Михайлович
  • Сарычев Борис Александрович
  • Сарычев Александр Федорович
  • Николаев Олег Анатольевич
  • Чигасов Дмитрий Николаевич
  • Горосткин Сергей Васильевич
RU2312900C2
СПОСОБ ВЫПЛАВКИ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ В ДУГОВОЙ ЭЛЕКТРОПЕЧИ 1996
  • Зубарев А.Г.
  • Дорофеев Г.А.
  • Рабинович Е.М.
  • Тамбовский В.И.
  • Ситнов А.Г.
  • Тартаковский И.М.
RU2102497C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОЛЕГИРОВАННОЙ ВАНАДИЕМ И АЗОТОМ ПОЛУСПОКОЙНОЙ СТАЛИ 1996
  • Ашихин А.В.
  • Александров Б.Л.
  • Беловодченко А.И.
  • Гоголев Б.Н.
  • Жириков В.Н.
  • Заболотный В.В.
  • Зорихин В.В.
  • Киричков А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Куклинский М.И.
  • Литовский В.Я.
  • Ляпцев В.С.
  • Одиноков С.Ф.
  • Осокин В.А.
  • Петренев В.В.
  • Стамбульчик М.А.
  • Тараев С.П.
  • Чернушевич А.В.
RU2069232C1
СПОСОБ ПОЛУЧЕНИЯ ПОДШИПНИКОВОЙ СТАЛИ 2001
  • Носов С.К.
  • Кузовков А.Я.
  • Крупин М.А.
  • Полушин А.А.
  • Фетисов А.А.
  • Ильин В.И.
  • Петренко Ю.П.
  • Данилин Ю.А.
  • Зажигаев П.А.
  • Гейнц А.Г.
  • Виноградов С.В.
RU2200198C2
СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА В КОНВЕРТЕРЕ 1998
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Ильин В.И.
  • Чернушевич А.В.
  • Смирнов Л.А.
  • Ровнушкин В.А.
  • Дерябин Ю.А.
  • Кокареко О.Н.
  • Одиноков С.Ф.
RU2136764C1
СПОСОБ РАСКИСЛЕНИЯ И ЛЕГИРОВАНИЯ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ 1995
  • Ляпцев В.С.
  • Милютин Н.М.
  • Фетисов А.А.
  • Чернушевич А.В.
  • Киричков А.А.
  • Комратов Ю.С.
  • Петренев В.В.
  • Криночкин Э.В.
  • Беловодченко А.И.
  • Куклинский М.И.
  • Заболотный В.В.
  • Александров Б.Л.
RU2064509C1
СПОСОБ РАСКИСЛЕНИЯ, МОДИФИЦИРОВАНИЯ И МИКРОЛЕГИРОВАНИЯ СТАЛИ ВАНАДИЙСОДЕРЖАЩИМИ МАТЕРИАЛАМИ 1998
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Чернушевич А.В.
  • Ильин В.И.
  • Батуев С.Б.
  • Фетисов А.А.
  • Исупов Ю.Д.
  • Одиноков С.Ф.
  • Пилипенко В.Ф.
  • Федоров Л.К.
  • Кромм В.В.
RU2140995C1
СПОСОБ ПРОИЗВОДСТВА ПРОКАТА И ПОКОВОК 2005
  • Гузенков Сергей Александрович
RU2280083C1
Способ производства низкокремнистой стали 2023
  • Шеховцов Евгений Валентинович
  • Ремиго Сергей Александрович
  • Кромм Владимир Викторович
  • Корогодский Алексей Юрьевич
  • Ковязин Игорь Владимирович
  • Ткачев Андрей Сергеевич
RU2818526C1
СПОСОБ ВЫПЛАВКИ И ВАКУУМИРОВАНИЯ РЕЛЬСОВОЙ СТАЛИ 2008
  • Юрьев Алексей Борисович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Захарова Татьяна Петровна
  • Корнева Лариса Викторовна
  • Тиммерман Наталья Николаевна
  • Кузнецов Евгений Павлович
  • Обшаров Михаил Владимирович
RU2394918C2

Реферат патента 2008 года СПОСОБ ПРОИЗВОДСТВА ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ

Изобретение относится к черной металлургии, в частности к получению легированных сталей. Способ включает выпуск расплава из сталеплавильного агрегата в ковш, продувку металла инертным газом, введение в расплав микролегирующих элементов. Перед усреднительной продувкой вводят в ковш ванадий в виде феррованадия в количестве ванадия, равном 0,0010...0,0018 от массы расплава в ковше. После продувки и корректировки химсостава стали ее подвергают вакуумированию на циркуляционном вакууматоре с коэффициентом циркуляции в интервале 4,5...8,0 и с остаточным разряжением в нем не более 3 мм рт.ст. Использование изобретения позволяет получить качественную ванадийсодержащую сталь.

Формула изобретения RU 2 334 797 C2

Способ производства ванадийсодержащей стали, включающий выпуск расплава из сталеплавильного агрегата в ковш, введение в расплав легирующих элементов и продувку его инертным газом, отличающийся тем, что перед продувкой расплава в ковше инертным газом в него вводят ванадий в виде феррованадия в количестве ванадия 0,001-0,0018 массы расплава в ковше, после продувки инертным газом осуществляют корректировку химического состава расплава в ковше и подвергают его вакуумированию на циркуляционном вакууматоре с коэффициентом циркуляции 4,5 - 8,0 и с остаточным разрежением в нем не более 3 мм рт.ст.

Документы, цитированные в отчете о поиске Патент 2008 года RU2334797C2

Способ получения ванадийсодержащей стали 1986
  • Бреус Валентин Михайлович
  • Милюц Валерий Георгиевич
  • Павлов Вячеслав Владимирович
  • Чирихина Светлана Леонидовна
SU1323579A1
СПОСОБ ВЫПЛАВКИ ВАНАДИЙСОДЕРЖАЩИХ СТАЛЕЙ И СПЛАВОВ 1999
  • Кошелев И.С.
  • Подрезов В.А.
  • Бейлис Л.М.
  • Шаповалов А.С.
  • Кошелев С.П.
RU2144089C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОЛЕГИРОВАННОЙ ВАНАДИЕМ И АЗОТОМ ПОЛУСПОКОЙНОЙ СТАЛИ 1996
  • Ашихин А.В.
  • Александров Б.Л.
  • Беловодченко А.И.
  • Гоголев Б.Н.
  • Жириков В.Н.
  • Заболотный В.В.
  • Зорихин В.В.
  • Киричков А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Куклинский М.И.
  • Литовский В.Я.
  • Ляпцев В.С.
  • Одиноков С.Ф.
  • Осокин В.А.
  • Петренев В.В.
  • Стамбульчик М.А.
  • Тараев С.П.
  • Чернушевич А.В.
RU2069232C1
СПОСОБ ПРОИЗВОДСТВА МИКРОЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ 1997
  • Александров Б.Л.
  • Беловодченко А.И.
  • Киричков А.А.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Куклинский М.И.
  • Ляпцев В.С.
  • Милютин Н.М.
  • Петренев В.В.
  • Полянский А.М.
  • Фетисов А.А.
  • Чернушевич А.В.
RU2118380C1
RU 2004596 C1, 15.12.1993
RU 2055094 C1, 27.02.1996.

RU 2 334 797 C2

Авторы

Сарычев Борис Александрович

Сарычев Александр Федорович

Николаев Олег Анатольевич

Чигасов Дмитрий Николаевич

Кебенко Евгений Валерьевич

Антипанов Вадим Григорьевич

Мещеров Сергей Викторович

Даты

2008-09-27Публикация

2006-07-20Подача