ГАЗООБРАЗУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ Российский патент 2008 года по МПК C06D5/06 C06B27/00 

Описание патента на изобретение RU2335484C2

Изобретение относится к области пиротехники и может быть использовано в источниках газа, работающих в импульсном режиме, для получения смеси газов (в основном, водорода) высокой температуры и давления.

Газообразующие составы широко применяются в различных технических средствах, использующих энергию газов для:

- создания определенного давления;

- перемещения исполнительных механизмов;

- наддува топливных емкостей;

- заполнения подушек безопасности и т.д.

В ряде случаев для обеспечения работоспособности технических средств, например пирорезаков, необходимо создание мощного импульса давления. Как правило, подобные импульсы характеризуются скоростью нарастания давления и имеют величину порядка 106 кгс/см2·с-1, что фактически характеризует процесс взрывного превращения состава.

Пиротехнический состав, предназначенный для создания такого импульса давления, должен иметь следующие характеристики:

- высокое удельное газовыделение;

- способность к быстрому (взрывному) превращению, в том числе и в прессованном виде;

- работоспособность в интервале температур от минус 50°С до плюс 50°С при минимальных количествах вещества, ограниченных габаритами конструкции;

- высокую чувствительность к начальному тепловому импульсу (низкую температуру воспламенения), поскольку инициирование данных составов зачастую осуществляется медленногорящими замедлительными составами с низкой температурой горения;

- низкую гигроскопичность и способность сохранять свои свойства в течение требуемого промежутка времени (гарантийного срока изделия).

В литературе имеются данные о различных веществах (пороха, ПТС), способных создавать импульс давления [Вспомогательные системы ракетно-космической техники, перевод под ред. И.В.Тишунина, М., "МИР", 1970, с.117]. Тем не менее известные вещества не отвечают всем указанным выше требованиям.

Так, используемый черный (дымный) порох имеет импульс давления всего 0,021·106 кгс/см2·с-1, что ограничивает его применение. Более высокий импульс давления имеет бездымный порох (0,196·106 кгс/см2·с-1), но и этот материал не достаточно эффективен, особенно в прессованном виде и при отрицательных температурах (вследствие наличия паров воды в продуктах сгорания).

Еще большей эффективностью по импульсу давления обладает так называемая смесь 50/25/25 фирмы "Дюпон", которая, по-видимому, является пиротехническим составом. В данном случае импульс давления составляет 1,33·106 кгс/см2·с-1. Сведения о рецептуре данной смеси отсутствуют.

Там же имеются сведения о составе на основе перхлората аммония и циркония (процентное содержание не приводится). При испытаниях прессованных образцов из этого состава был зафиксирован импульс давления 4,2·106 кгс/см2·с-1. Недостатками данного состава являются высокая гигроскопичность и токсичность перхлората аммония.

Наиболее перспективным, по мнению авторов предлагаемого изобретения, является использование газообразующего пиротехнического состава на основе гидрида алюминия.

Данный материал широко используется в качестве высокоэнергетической добавки в твердых ракетных топливах (ТРТ). Например, известен следующий состав ТРТ, мас.% [патент США №3755019, кл. C06D 5/06, Том 913, №4, 28 августа 1973]:

Гидрид алюминия5÷25Окислитель, выбираемый из группы, в которую входятперхлорат аммония, перхлорат натрия, перхлорат калия,30÷70аммиачная селитра, калиевая селитра, натриевая селитраПластифицированная нитроцеллюлоза15÷70

В данном случае имеет место сгорание гидрида алюминия до Al2О3 и Н2О, при этом скорость горения составляет несколько мм/с (десятков мм/с).

Наиболее близким по технической сущности является пиротехнический состав с использованием гидрида алюминия и оксида железа [Патент США №3948700, кл. С06В 23/00, С06В 27/00, 6 апреля 1976]. В данном случае авторы изобретения предлагают состав для получения водорода высокой температуры, при этом патентуется реакция типа:

Fe2O3+2AlH3→2Fe+Al2О3+3Н2.

Данный состав содержит 27,3% мас. AlH3 и 72,7% мас. Fe2О3. Температура реакции 3000°С, удельное газовыделение водорода 300 см3/г (при нормальных условиях: 0°С, 760 мм рт.ст.).

Для использования в качестве газообразующего пиротехнического состава, способного создавать мощный импульс давления, данный состав не подходит, т.к. имеет невысокую скорость горения и не способен к быстрому (взрывному) превращению. Входящий в состав окислитель Fe2О3 имеет температуру разложения 1565°С, поэтому данный состав имеет достаточно высокую температуру воспламенения (не менее 500°С).

Задачей предлагаемого технического решения является значительное повышение газовыделения состава и придание ему способности к быстрому (взрывному) превращению в прессованном виде.

Технический результат, достигаемый при использовании изобретения, следующий:

- удельное газовыделение не менее 400 см3/г;

- способность создавать импульс давления не менее 3·106 кгс/см2·с-1 в прессованном виде;

- работоспособность в составе конструкции в интервале температур от минус 50°С до плюс 50°С при минимальных количествах вещества (мг);

- температура воспламенения не более 200°С;

- низкая гигроскопичность (менее 0,1%) и высокая химическая стойкость в течение длительного срока хранения (не менее 20 лет в составе изделия).

Поставленная задача и технический результат достигаются за счет того, что известный газообразующий пиротехнический состав, содержащий в качестве горючего гидрид алюминия и окислитель, согласно изобретению в качестве окислителя содержит перхлорат калия при следующем соотношении компонентов, мас.%:

Гидрид алюминия25÷70Перхлорат калия30÷75

Замена используемого в прототипе окислителя Fe2О3 (температура разложения 1565°С) на перхлорат калия (температура разложения 580°С), содержащий в себе гораздо больший процент кислорода, позволила повысить в составе процентное содержание гидрида алюминия, что в совокупности привело к значительному повышению удельной калорийности состава, объему выделяемого водорода и обеспечению способности состава к взрывному превращению даже в прессованном виде.

Следует отметить, что при горении состава развивается весьма высокая температура (не менее 3000°С), в результате чего конденсированные продукты горения (Н2О, KCl) переходят в парообразное состояние. Это значительно повышает общий объем газообразных продуктов реакции при горении состава и способствует повышению импульса давления.

Экспериментально подобранное соотношение компонентов позволяет достигнуть вышеуказанный технический результат. Экспериментальные и расчетные данные приведены в таблице. Удельное газовыделение продуктов горения состава приведено для нормальных условий (0°С, 760 мм рт.ст.).

Содержание компонентов, % мас.Удельное газовыделение, см3/г (расчет)Удельная калорийность, ккал/г (кДж/г) (расчет)Импульс давления, кгс/см2·с-1 (эксперим.)KClO4AlH3Н2KClН2OСуммарное17525751212044002,28 (9,55)8,0·106270302191131164492,34 (9,80)10,2·10636337414102-5162,45 (10,26)13,5·1064554550489-5932,09 (8,75)13,0·1065505056081-6411,89 (7,91)12,0·1066406067264-7361,55 (6,49)8,2·1067307078448-8321,16 (4,85)3,0·106

Горение состава с содержанием гидрида алюминия 37% протекает согласно следующему уравнению:

3KClO4+8AlH3=3KCl+4Al2O3+12Н2↑.

При горении составов с содержанием гидрида алюминия менее 37% мас., продуктами горения могут быть Н2, Н2О, KCl и Al2О3.

При горении составов с содержанием гидрида алюминия более 37% мас., продуктами горения могут быть Н2, KCl, Al и Al2О3.

Для экспериментальной отработки заявляемый состав изготавливался смешением порошков:

- гидрид алюминия <10 мкм;

- перхлорат калия <40 мкм.

Для определения характеристик горения использовались образцы со степенью уплотнения 0,8÷0,85.

Импульс давления определялся сжиганием образцов в герметичной сборке, при этом определялось максимальное давление и время, за которое оно достигалось.

Температура воспламенения состава определялась по методу ДТА.

Из данных, приведенных в таблице, следует, что удельное газовыделение заявляемого состава достигает 400÷832 см3/г, удельная калорийность составляет 1,16÷2,45 ккал/г.

Наибольшим импульсом давления обладают составы с содержанием гидрида алюминия 37÷50% мас. Составы с большим содержанием AlH3 имеют большее удельное газовыделение, но и меньшую удельную калорийность, что приводит к снижению импульса давления.

Температура воспламенения заявляемого состава находится в пределах 180÷190°С.

Многократно проведенные эксперименты подтвердили работоспособность и высокую надежность работы заявляемого состава во всем диапазоне температур от минус 50°С до плюс 50°С при минимальной массе состава, составляющей несколько мг.

Данный состав отличается низкой гигроскопичностью (менее 0,1%) и высокой химической стойкостью на протяжении гарантийного срока хранения изделия (не менее 20 лет).

Похожие патенты RU2335484C2

название год авторы номер документа
ПИРОТЕХНИЧЕСКИЙ СОСТАВ ДЛЯ ПОЛУЧЕНИЯ КИСЛОРОДА 1998
  • Голубев В.А.
  • Демидов О.С.
  • Ионова Н.В.
  • Усков А.А.
  • Харламов М.В.
RU2142401C1
ПИРОТЕХНИЧЕСКИЙ СОСТАВ 2013
  • Лошкарев Владимир Николаевич
  • Малышев Александр Яковлевич
  • Постников Алексей Юрьевич
  • Татынов Александр Алексеевич
  • Иванов Владимир Вячеславович
  • Иванов Дмитрий Геннадьевич
  • Грушко Александр Васильевич
  • Малышев Александр Степанович
  • Беляев Евгений Николаевич
RU2531293C1
ПИРОТЕХНИЧЕСКИЙ СОСТАВ 2011
  • Малышев Александр Яковлевич
  • Постников Алексей Юрьевич
  • Лошкарёв Владимир Николаевич
  • Татынов Александр Алексеевич
  • Иванов Владимир Вячеславович
  • Кремзуков Иван Константинович
  • Климов Станислав Алексеевич
  • Кирюшкин Игорь Николаевич
  • Демидов Олег Сергеевич
  • Малышев Александр Степанович
RU2483050C2
ЗАМЕДЛИТЕЛЬНЫЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ 2008
  • Кремзуков Иван Константинович
  • Веденеев Александр Иванович
  • Пелесков Станислав Алексеевич
  • Федоров Александр Александрович
  • Иванов Дмитрий Геннадьевич
  • Грушко Александр Васильевич
RU2376271C2
ВОСПЛАМЕНИТЕЛЬНЫЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ 2018
  • Голубков Александр Николаевич
  • Максимкин Игорь Петрович
  • Юхимчук Аркадий Аркадьевич
RU2696387C1
ПИРОТЕХНИЧЕСКИЙ ВОСПЛАМЕНИТЕЛЬНЫЙ СОСТАВ 2012
  • Резников Михаил Сергеевич
  • Мингазов Азат Шамилович
  • Гинзбург Владимир Львович
  • Сидоров Алексей Иванович
  • Абдуллин Ильнур Абдуллович
  • Тимофеев Николай Егорович
RU2501776C1
ГАЗООБРАЗУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ 1998
  • Харламов М.В.
RU2151759C1
ПИРОТЕХНИЧЕСКИЙ СОСТАВ 2005
  • Малышев Александр Степанович
  • Харламов Михаил Владимирович
  • Ярошенко Вячеслав Викторович
  • Малышев Александр Яковлевич
  • Кремзуков Иван Константинович
  • Игнатов Олег Леонидович
RU2297404C1
ГАЗОГЕНЕРИРУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ 1993
  • Голубев В.А.
  • Усков А.А.
  • Харламов М.В.
RU2068831C1
ПИРОТЕХНИЧЕСКИЙ СОСТАВ 1993
  • Воронцов А.М.
  • Леваков Е.В.
  • Кремзуков И.К.
  • Колобянина Н.М.
  • Костаков В.П.
  • Найда С.А.
RU2091359C1

Реферат патента 2008 года ГАЗООБРАЗУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ

Изобретение относится к области пиротехники и может быть использовано в источниках газа, работающих в импульсном режиме. Предложенный газообразующий пиротехнический состав содержит порошок гидрида алюминия (25-70 мас.%) и порошок перхлората калия (30-75 мас.%). Состав имеет удельное газовыделение 400-832 см3/г, способен создавать импульс давления 3,0·106-13,5·106 кгс/см2·с-1, при этом температура воспламенения состава не более 200°С. 1 табл.

Формула изобретения RU 2 335 484 C2

Газообразующий пиротехнический состав, содержащий в качестве горючего порошок гидрида алюминия и окислитель, отличающийся тем, что в качестве окислителя он содержит порошок перхлората калия при следующем соотношении компонентов, мас.%:

порошок гидрида алюминия25÷70порошок перхлората калия30÷75

Документы, цитированные в отчете о поиске Патент 2008 года RU2335484C2

US 3948700 A, 06.04.1976
US 3960083 A, 01.06.1976
Роботизированный комплекс для ремонта дефектов сварных швов труб, изготовленных с использованием технологии лазерной сварки 2017
  • Романцов Александр Игоревич
  • Федоров Михаил Александрович
  • Черняев Антон Александрович
  • Котлов Александр Олегович
RU2680166C1
US 6783616 В1, 31.08.2004
US 5565646 A, 15.10.1996
ГАЗОГЕНЕРИРУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ 1993
  • Голубев В.А.
  • Усков А.А.
  • Харламов М.В.
RU2068831C1
ИСКРИСТО-ФОРСОВЫЙ СОСТАВ 2000
  • Дудырев А.С.
  • Головчак А.Н.
  • Климентьева Ю.И.
  • Коваленко Е.П.
  • Суворов А.К.
  • Суворов К.А.
  • Шалин С.Г.
RU2170223C1

RU 2 335 484 C2

Авторы

Ярошенко Вячеслав Викторович

Харламов Михаил Владимирович

Демидов Олег Сергеевич

Климов Станислав Алексеевич

Кирюшкин Игорь Николаевич

Елизарьев Юрий Васильевич

Селезенев Александр Аркадьевич

Крекнин Дмитрий Афанасьевич

Даты

2008-10-10Публикация

2006-10-30Подача