СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕРИЧЕСКОГО ЦЕОЛИТА ТИПА А ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ Российский патент 2008 года по МПК C01B39/18 

Описание патента на изобретение RU2336229C1

Предлагаемое изобретение относится к области производства цеолитных адсорбентов и может быть использовано в нефтеперерабатывающей и химической промышленности.

Известен способ получения синтетических цеолитов в виде микросферических гранул (а.с. СССР №146285, 1968 г.) путем распылительной сушки водной суспензии кристаллического цеолита с добавкой связующего вещества (высокопластичных и тонкодисперсных глин), взятой в количестве 10-35 мас.% от массы цеолита.

Недостатками известного способа являются низкие: фазовая чистота, адсорбционная емкость и износоустойчивость цеолита.

Известен способ получения сферических гранул синтетического цеолита, не содержащего связующих веществ, который заключается в предварительном получении сферических частиц SiO2 или Al2О3 путем коагуляции золя в гель. Стадию коагуляции проводят в органической жидкости, выбранной из группы спиртов или кетонов, например метаноле, этаноле, пропаноле, ацетоне. Сформованные сферические гранулы после сушки и прокалки подвергают кристаллизации в растворе алюмината или силиката натрия (патент США №3348911, 1967 г.).

Недостатком этого способа является сложность технологии. В процессе имеет место значительное выделение токсичных паров, являющихся сильными сердечно-сосудистыми и нервно-паралитическими ядами. Отделение микросферических гидрогелевых гранул от органической жидкости не может быть эффективно осуществлено.

Известен способ получения микросферического цеолита (а.с. СССР №361138, 1973 г.) путем распылительной сушки водной суспензии каолина, содержащей сульфат алюминия, и последующих стадий прокалки, кристаллизации и промывки гранул.

Недостатками этого способа являются низкие: фазовая чистота, адсорбционная емкость и прочность на истирание гранулированного цеолита.

Известен "Способ получения микросферических цеолитов" (а.с. СССР №361676), который заключается в: приготовлении водной суспензии каолина с влажностью 65 мас.%, содержащей силикат натрия в количестве 10 мас.%, считая на SiO2; распылительной сушке суспензии при температуре 350°С; прокалке микросферических алюмосиликатных гранул при температуре 700°С в течение 3 ч; кристаллизации гранул в щелочном алюминатном растворе при температуре 80°С в течение 6 ч; промывке откристаллизованных цеолитных гранул от избытка щелочи до рН=10,5 и их сушке.

Известный способ имеет недостатки.

1. Микросферические гранулы, получаемые в процессе распылительной сушки, имеют низкую прочность на истирание. Это приводит к разрушению микрогранул в процессе их пневмотранспорта в прокалочную печь, где прокалка протекает в "кипящем слое" гранул. Разрушение микрогранул ухудшает гранулометрический состав готового продукта и снижает его выход.

2. Микросферический цеолит обладает недостаточно высокими: фазовой чистотой, адсорбционной емкостью и износоустойчивостью.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является "Способ получения микросферического цеолита" (а.с. СССР №1256378, 1984 г.), который и выбран за прототип.

Сущность известного способа заключается в следующем.

В водную суспензию каолина с концентрацией каолина 100-200 г/л вводят растворы силиката натрия (SiO2=100 г/л) и подкисленного сульфата алюминия с концентрацией по Al2O3=20-25 г/л и 75-80 г/л по свободной серной кислоте. Водородный показатель (рН) суспензии составляет 10-11. Количество образующегося синтетического алюмосиликата в смеси - 10-20 мас.%. Суспензию подвергают распылительной сушке при температуре 350°С. Микросферические гранулы размером 50-100 мкм прокаливают в "кипящем" слое при температуре 600-700°С в течение 3 ч. Прокаленные гранулы кристаллизуют в щелочном алюминатном растворе. Состав реакционной смеси: 1,2Nа2O·Al2О3·1,8SiO2·50Н2O. Откристаллизованный микросферический цеолит типа А отмывают водой от избытка щелочи до рН=10,5 и высушивают при температуре 200-300°С в течение 4-6 ч.

Недостатками известного способа являются недостаточно высокие: фазовая чистота, адсорбционная емкость и износоустойчивость микросферического цеолита типа А, не содержащего связующих веществ.

Задачей предлагаемого изобретения является совершенствование технологии получения микросферического цеолита типа А, не содержащего связующих веществ, и, как следствие, получение цеолита с высокими адсорбционными и прочностными характеристиками и высокой фазовой чистотой.

Это достигается за счет использования следующих новых технологических приемов:

- дополнительное введение в исходную смесь, полученную путем смешения водной суспензии каолина с растворами силиката натрия и подкисленного сульфата алюминия, 5-10 мас.% порошкообразного цеолита NaA с размером кристаллов 0,5-2,0 мкм. Это обеспечивает получение микросферического цеолита типа А высокой фазовой чистоты, обладающего максимальной, для данного типа цеолита, адсорбционной емкостью;

- смешение исходной смеси сырьевых компонентов при рН, равном 9,5-10,5, что обеспечивает высокую износоустойчивость (механическую прочность) как сухих и прокаленных (промежуточные продукты), так и цеолитных гранул.

Указанные технологические приемы обеспечивают получение микросферического цеолита типа А, обладающего высокими (максимальными - сопоставили со свойствами порошкообразного цеолита типа А) фазовой чистотой, адсорбционной емкостью и износоустойчивостью.

Анализ известных способов получения микросферического цеолита типа А показал, что приготовление сырьевой смеси для получения гранул путем смешения суспензии каолина с раствором силиката натрия (SiO2=100 г/л) и подкисленного сульфата алюминия (Al2О3=20-25 г/л, H2SO4=75-80 г/л) при рН, равном 10,0-11,0 известно. Однако только факт дополнительного введения в сырьевую смесь 5-10 мас.% порошкообразного цеолита NaA с размером кристаллов 0,5-2,0 мкм и смешения сырьевых компонентов при рН=9,5-10,5 обеспечивает получение износоустойчивого микросферического цеолита типа А высокой фазовой чистоты, обладающего максимальной, для данного типа цеолита, адсорбционной емкостью.

Сущность предлагаемого изобретения заключается в следующем.

Приготавливают водную суспензию каолина с концентрацией сухого вещества 100-200 г/л. В суспензию вводят растворы силиката натрия с концентрацией по SiO2=100 г/л, подкисленного сульфата алюминия с концентрацией по Al2О3=20-25 г/л, по Н2SO4=75-80 г/л и дополнительно вводят порошкообразный цеолит NaA с размером кристаллов 0,5-2,0 мкм в количестве 5-10 мас.%, считая на суммарную массу каолина и образующегося синтетического алюмосиликата. Водородный показатель (рН) приготовленной суспензии составляет 9,5-10,5. Количество каолина в смеси - 75-85 мас.%. Количество образующегося синтетического алюмосиликата в смеси - 15-25 мас.%.

Суспензию подвергают распылительной сушке в потоке дымовых газов при температуре 350°С. Сухие микросферические гранулы прокаливают в "кипящем" слое при температуре 600°С в течение 3 ч. Затем прокаленные гранулы кристаллизуют в щелочном алюминатном растворе. Состав реакционной (кристаллизационной) смеси: 1,2Na2O·Al2О3·1,8SiO2·50Н2О. Откристаллизованный микросферический цеолит типа А отмывают водой от избытка щелочи до рН=10,5 и высушивают при температуре 200-300°С в течение 4-6 ч.

Сущность предлагаемого способа поясняется конкретными примерами его осуществления (см. таблицу 1 и 2).

Пример 1. К 53,4 л каолиновой суспензии с концентрацией по сухому веществу 150 г/л добавляют при перемешивании 19,1 мл раствора силиката натрия с концентрацией по SiO2 100 г/л и 4,53 л раствора подкисленного сульфата алюминия с концентрацией по Al2О3 20 г/л и 80 г/л по свободной серной кислоте. В исходную смесь дополнительно вводят 0,5 кг порошкообразного цеолита NaA (5 мас.%) с размером кристаллов 0,5-2,0 мкм.

После часового перемешивания однородную суспензию с рН=10 направляют на распылительную сушку, которую проводят в токе дымовых газов при 350°С. Полученные сухие микросферические гранулы пневмотранспортом направляют в прокалочный аппарат, где прокаливают в кипящем слое при 600°С. Прокаленные гранулы содержат 5 мас.% порошкообразного цеолита типа А, считая на суммарную массу каолина и синтетического алюмосиликата.

К 105 г прокаленных микросферических гранул приливают 531 мл щелочного алюминатного раствора концентрацией 42,3 г/л по Al2О3 и 105,4 г/л по NaOH. Реакционную массу состава 1,2Na2O·Al2O3·1,8SiO2·50Н2О подвергают кристаллизации. Откристаллизованный цеолит отмывают водой от избытка щелочи до рН промывной воды 10,5 и высушивают при 250°С в течение 5 ч.

Микросферический цеолит типа А, не содержащий связующих веществ, по данным рентгеноструктурного анализа обладает 99% степенью кристалличности. Адсорбционная емкость цеолита по парам воды при 20°С и относительном давлении P/PS=0,5 составляет 0,25 см3/г. Износоустойчивость цеолитных гранул 98 мас.%.

Условия приготовления суспензии (сырьевой смеси) для распылительной сушки и вещественный состав сухих микросферических гранул (после распылительной сушки) согласно остальным примерам по предлагаемому способу приведены в таблице 1.

Сопоставление физико-химических свойств образцов цеолитов типа А и промежуточных продуктов (микросферических гранул после распылительной сушки и прокалки), полученных по предлагаемому и известному способам, приведено в таблице 2. В этой же таблице приведены данные испытаний образцов цеолитов и промежуточных продуктов на износоустойчивость (механическую прочность) в шаровой мельнице (ОСТ 38 01176-79).

Если рН суспензии (сырьевой смеси) меньше 9,5 и, следовательно, содержание образовавшегося синтетического алюмосиликата в распыляемой суспензии больше 25 мас.%, то это приводит к уплотнению пористой структуры микросферических гранул после прокалки и к ухудшению свойств цеолитных гранул после кристаллизации. Увеличение рН суспензии больше 10,5 вызывает снижение содержания синтетического алюмосиликата в распыляемой суспензии менее 15 мас.%. Это нежелательно из-за невысокой износоустойчивости (прочности) промежуточных продуктов (сухих и прокаленных гранул) и откристаллизованного микросферического цеолита.

Введение в приготовленную для распылительной сушки сырьевую смесь более 10 мас.% порошкообразного цеолита NaA снижает износоустойчивость промежуточных продуктов (сухих и прокаленных гранул) и откристаллизованного микросферического цеолита типа А. Если количество добавки порошкообразного цеолита NaA меньше 5 мас.%, то снижаются фазовая чистота и адсорбционная емкость готового микросферического цеолита.

Если размер кристаллов порошкообразного цеолита NaA, вводимого в сырьевую смесь, крупнее 2,0 мкм, то это приводит к снижению износоустойчивости микросферического цеолита. Промышленное получение высокодисперсного цеолита NaA с размером кристаллов менее 0,5 мкм требует использования специальных технологических приемов и оборудования. Это значительно удорожает порошкообразный цеолит и делает нецелесообразным его использование в предлагаемом способе получения микросферического цеолита типа А.

Износоустойчивость как микросферического цеолита, так и промежуточных продуктов, получаемых по предлагаемому способу, превосходит износоустойчивость цеолита и промежуточных продуктов, получаемых по прототипу. Фазовая чистота и адсорбционная емкость микросферического цеолита типа А выше, чем у всех известных аналогов.

Таблица 1Условия приготовления суспензии (сырьевой смеси) и вещественный состав сухих микросферических гранулПримерыСодержание в суспензии, мас.%рН суспензии, ед.Порошкообразный цеолит - добавка в суспензию, мас.%КаолинСинтетический алюмосиликатПрототип80-9010-2010,0-11,0нет1802010,05275259,553851510,55475259,5105851510,5106 сравнительный802010,037 сравнительный802010,0158 сравнительный70309,059 сравнительный901011,0510* сравнительный802010,05* - размер кристаллов добавки порошкообразного цеолита 2,0-3,0 мкм.

Таблица 2Свойства микросферического цеолита типа А высокой фазовой чистотыПримерыСвойства цеолитаФазовая чистота (степень кристалличности) по данным рентгеноструктурного анализа, мас.%Адсорбционная емкость по парам воды при 20°С и относительном давлении P/PS=0,5, см3Износоустойчивость (механическая прочность) гранул, мас.%сухихпрокаленныхцеолитапрототип95-960,2440-6060-8590-951990,257291982980,25759310031000,2570899741000,25729110051000,256886956 сравнительный980,247290987 сравнительный1000,255674908 сравнительныйцеолит А и гидросодалит0,1982961009 сравнительный1000,2561788810 сравнительный990,25607787

Похожие патенты RU2336229C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОУСТОЙЧИВОГО МИКРОСФЕРИЧЕСКОГО ЦЕОЛИТА ТИПА А 2007
  • Павлов Михаил Леонардович
  • Травкина Ольга Сергеевна
  • Кутепов Борис Иванович
  • Павлова Ирина Николаевна
  • Пашкина Альбина Николаевна
RU2337064C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ЦЕОЛИТНОГО АДСОРБЕНТА NaA 2017
  • Бодрый Александр Борисович
  • Усманов Ильшат Фаритович
  • Рахматуллин Эльвир Маратович
  • Тагиров Айдар Шамилевич
  • Илибаев Радик Салаватович
  • Суркова Лидия Васильевна
  • Кислицын Руслан Алексеевич
RU2655104C1
Способ получения сверхвысококремнеземного микросферического цеолита типа ZSM без связующего 1988
  • Косолапова Антонина Павловна
  • Павлов Михаил Леонардович
  • Успенская Любовь Аврамовна
SU1640111A1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННЫХ СИНТЕТИЧЕСКИХ ЦЕОЛИТОВ 2005
  • Рахимов Халил Халяфович
  • Кутепов Борис Иванович
  • Рогов Максим Николаевич
  • Ишмияров Марат Хафизович
  • Рахимов Марат Наврузович
  • Павлов Михаил Леонардович
  • Мельников Геннадий Николаевич
  • Лукъянчиков Игорь Иванович
  • Патрикеев Валерий Анатольевич
  • Галяутдинов Анвер Амирович
  • Махаматханов Рустам Азимжанович
  • Басимова Рашида Алмагиевна
  • Молчанов Сергей Александрович
  • Чехонин Михаил Федорович
RU2283279C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА ТИПА А 2009
  • Павлов Михаил Леонардович
  • Травкина Ольга Сергеевна
  • Кутепов Борис Иванович
  • Павлова Ирина Николаевна
RU2425801C2
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА ТИПА А ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ 2009
  • Павлов Михаил Леонардович
  • Травкина Ольга Сергеевна
  • Кутепов Борис Иванович
  • Павлова Ирина Николаевна
RU2420456C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТНОГО АДСОРБЕНТА СТРУКТУРЫ А И Х ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ 2009
  • Павлов Михаил Леонардович
  • Травкина Ольга Сергеевна
  • Кутепов Борис Иванович
  • Павлова Ирина Николаевна
RU2420457C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СИНТЕТИЧЕСКОГО ЦЕОЛИТСОДЕРЖАЩЕГО КОМПОНЕНТА СМС 2002
  • Рахимов Х.Х.
  • Джемилев У.М.
  • Павлов М.Л.
  • Патрикеев В.А.
  • Кутепов Б.И.
  • Рахимов М.Н.
  • Олонцев И.Ф.
  • Дивакова Н.А.
  • Апкаримова Г.И.
  • Махаматханов Р.А.
RU2230779C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА ТИПА NaY ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ 2014
  • Шавалеев Дамир Ахатович
  • Павлов Михаил Леонардович
  • Басимова Рашида Алмагиевна
  • Шавалеева Назифа Наилевна
  • Эрштейн Антон Сергеевич
  • Травкина Ольга Сергеевна
  • Кутепов Борис Иванович
RU2568219C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА ТИПА NaY ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ 2009
  • Павлов Михаил Леонардович
  • Басимова Рашида Алмагиевна
  • Кутепов Борис Иванович
  • Джемилев Усеин Меметович
  • Травкина Ольга Сергеевна
  • Мячин Сергей Иванович
  • Прокопенко Алексей Владимирович
RU2412903C1

Реферат патента 2008 года СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕРИЧЕСКОГО ЦЕОЛИТА ТИПА А ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ

Изобретение относится к области производства цеолитных адсорбентов и может быть использовано в нефтеперерабатывающей и химической промышленности. Для получения микросферического цеолита типа А высокой фазовой чистоты в водную суспензию каолина вводят растворы силиката натрия и подкисленного сульфата алюминия и вводят порошкообразный цеолит NaA с размером кристаллов 0,5-2,0 мкм в количестве 5-10 мас.%, считая на суммарную массу каолина и образующегося синтетического алюмосиликата. Водородный показатель (рН) приготовленной суспензии составляет 9,5-10,5. Количество каолина в смеси - 75-85 мас.%. Количество образующегося синтетического алюмосиликата в смеси - 15-25 мас.%. Суспензию подвергают распылительной сушке в потоке дымовых газов при температуре 350°С, прокаливают в "кипящем" слое при температуре 600°С, прокаленные гранулы кристаллизуют в щелочном алюминатном растворе, отмывают водой от избытка щелочи и высушивают. Изобретение позволяет получить цеолит с высокими адсорбционными и прочностными характеристиками и с высокой фазовой чистотой. 2 табл.

Формула изобретения RU 2 336 229 C1

Способ получения микросферического цеолита типа А высокой фазовой чистоты, включающий приготовление сырьевой смеси путем смешения суспензии каолина, силиката натрия и подкисленного сульфата алюминия, распылительную сушку, прокалку и кристаллизацию в щелочном алюминатном растворе, отличающийся тем, что в исходную сырьевую смесь дополнительно вводят 5-10 мас.% порошкообразного цеолита NaA с размером кристаллов 0,5-2,0 мкм и смешение проводят при рН, равном 9,5-10,5.

Документы, цитированные в отчете о поиске Патент 2008 года RU2336229C1

SU 1256378 С1, 27.10.1996
US 4413843 А, 12.09.1978
US 3348911 А, 24.10.1964
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ЦЕОЛИТА ТИПА А НА ОСНОВЕ ПРИРОДНОГО ГЛИНИСТОГО МАТЕРИАЛА 1992
  • Успенский Б.Г.
  • Дудин М.В.
  • Успенская Л.А.
  • Аваков С.А.
  • Глухов В.А.
  • Киселев В.Б.
  • Рыбаков И.П.
RU2033967C1
SU 1450272 А1, 27.10.1996
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА, СОДЕРЖАЩЕГО ЦЕОЛИТ И ЖАРОПРОЧНОЕ СВЯЗУЮЩЕЕ С НИЗКОЙ КИСЛОТНОСТЬЮ 2000
  • Крейнен-Ван Берс Мария Барбара Хендрика
  • Дарнанвилль Жан-Поль
  • Местерс Каролус Маттиас Анна Мария
  • Реманс Томас Йорис
RU2259878C2

RU 2 336 229 C1

Авторы

Павлов Михаил Леонардович

Травкина Ольга Сергеевна

Кутепов Борис Иванович

Павлова Ирина Николаевна

Травкин Евгений Александрович

Даты

2008-10-20Публикация

2007-04-16Подача