БРОНЕЧЕХОЛ ДЛЯ ВКЛАДНОГО ЗАРЯДА ИЗ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА К РАКЕТНОМУ ДВИГАТЕЛЮ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ Российский патент 2008 года по МПК C06B21/00 B32B27/38 

Описание патента на изобретение RU2336259C2

Предлагаемое изобретение относится к области ракетной техники и касается создания бронечехла для вкладного заряда из смесевого твердого топлива (СТТ) к ракетному двигателю (РД) и способа его изготовления.

Одним из известных способов бронирования зарядов ТРТ является метод заливки, заключающийся в установке бронируемой шашки в форму и в заливке зазора между шашкой и формой жидким бронесоставом с последующей его полимеризацией и извлечением забронированного заряда из формы. Известная технологическая схема изготовления зарядов с использованием металлического или стеклопластикового корпуса заключается в подготовке внутренней поверхности корпуса методом дробеструйной обработки, нанесении клея типа «Лейконат», выкладки теплозащитного покрытия (ТЗП), вулканизации его, шероховки поверхности ТЗП, обезжиривании растворителем, сушки и заполнении смесевым твердым топливом. Данный цикл длительный, трудоемкий, энергоемкий и не исключает возникновения дефектов (непроклеев) при приклейке ТЗП к поверхности корпуса, которые впоследствии приведут к разрушению двигателя.

Существует способ изготовления стеклопластикового бронечехла (авторское свидетельство СССР №132806 от 14.11.1959 г.) на основе модифицированных эпоксидных смол, но данный материал обладает способностью образовывать при высоких температурах высокопрочный кокс, который придает повышенную хрупкость материалу, а наличие в связующем составе растворителя - ацетона способствует возникновению воздушных пузырей и раковин в стекломатериале. Использование данного способа изготовления бронечехла для ракетного двигателя невозможно из-за возникновения дефектов, нарушения целостности бронечехла и низкой теплостойкости.

Наиболее близким по технической сущности решением к изобретениям является способ бронирования в процессе формования заряда с использованием готовых бронечехлов из двухслойного материала, состоящего из резины, дублированной асболавсановой или капроновой тканью, по методу, приведенному в кратком энциклопедическом словаре «Энергетические конденсированные системы» под редакцией Академика Б.П.Жукова, стр.264, 236 (прототип), в котором отмечается сложность крепления бронечехла в изложнице. Кроме того, бронечехол не придает сформированному заряду дополнительной жесткости для устойчивой его работы в условиях аэродинамического нагрева.

Технической задачей заявленных изобретений является разработка бронечехола и способа его изготовления с улучшенными технологическими и эксплуатационными свойствами, обеспечивающими:

- простоту установки и крепления бронечехла в изложнице при формовании заряда;

- исключение операции механической обработки и технологических потерь СТТ;

- надежность работы заряда из СТТ к РД в условиях воздействия аэродинамического нагрева.

Эта задача решается за счет того, что бронечехол для вкладного заряда из СТТ к РД состоит из двух слоев:

1-й слой - теплозащитное покрытие (ТЗП) толщиной 0,5-2,0 мм, состоящее из резины на основе нитрильного, этиленпропиленового, дивинилизопренового или фтор-каучуков, дублированной асботканью или асболавсановой тканью, и соединен со 2-м слоем;

2-й формующий слой выполнен из органостеклоармировки толщиной 0,1-0,2 мм и шириной 15-50 мм, пропитанной теплостойким эпоксидным связующим.

Технический результат достигается за счет способа изготовления бронечехола для вкладного заряда из СТТ к РД, заключающегося в укладке слоев органостеклоармировки, пропитанной теплостойким эпоксидным связующим составом горячего отверждения, непосредственно на тканевую основу ТЗП (1-й слой) за 1-3 прохода с нахлестом в 1-3 мм, причем расход теплостойкого эпоксидного связующего составляет 250-500 г/м2, в зависимости от геометрических размеров (толщины и ширины) органостеклоармировки.

Заявленные изобретения взаимосвязаны настолько, что образуют единый изобретательский замысел. Действительно, при создании бронечехла с требуемыми свойствами был изобретен способ его изготовления.

Использование бронечехла, изготовленного по предлагаемому способу, позволяет решить поставленную задачу с получением требуемого технического результата - получить бронечехол, обеспечивающий надежное крепление СТТ к ТЗП и гарантирующий надежную эксплуатацию РД. Следовательно, заявленные изобретения удовлетворяют требованию единства изобретения.

Сущность изобретений заключается в следующем.

Теплостойкий эпоксидный связующий состав для пропитки органостеклоармировки готовят в обычных смесителях следующим образом: эпоксидиановые смолы с молекулярными массами 390-450 и 480-540 (смолы эпоксидной марки ЭД-20 и марки ЭД-16 соответственно), продукт конденсации этриола с эпихлоргидрином (смола марки ЭЭТ-1) и эпоксициануровую смолу перемешивают при температуре 80-100°С в течение не менее 15-30 минут при скорости вращения мешалки 125-158 об/мин, снижают температуру смеси до 50-60°С и вводят навеску изометилтетрагидрофталевого ангидрида, перемешивают при температуре 55±5°С в течение 15-30 минут при скорости вращения мешалки 125-158 об/мин при вакуумировании при остаточном давлении не более 20 мм рт.ст.

Вязкость неотвержденного эпоксидного связующего состава при температуре 20-60°С по вискозиметру В3-1 не более 60 сек, живучесть 2-6 часов при температуре 60°С.

На специальную оправку, обмотанную фторопластовой лентой, укладывают подготовленные резинотканевые заготовки из резины (этиленпропиленовой, нитрильной, дивинилизопреновой или фтор-каучуковой), дублированной асботканью или асболавсановой тканью. Укладку производят на фторопластовую ленту резиновой поверхностью, которая и обеспечивает прочное скрепление ТЗП с СТТ, а тканевая основа обращена к пропитанной органостеклоармировке, это обеспечивает надежное скрепление со 2-м формующим слоем. Толщина 1-го слоя ТЗП - 0,5-2,0 мм. На тканевую основу ТЗП (см. чертеж, поз.1) укладывают 2-й формующий слой органостеклопластика, выполненного из органостеклоармировки толщиной 0,1-0,2 мм и шириной 15-50 мм, пропитанной теплостойким эпоксидным связующим составом с последующим отверждением при повышенной температуре (см. чертеж, поз.2).

Укладку органостеклоармировки, пропитанной теплостойким эпоксидным связующим, осуществляют за 1-3 прохода с нахлестом в 1-3 мм. При этом расход пропиточного состава составляет 250-500 г/м2.

Готовый бронечехол отверждают при температуре 150-155°С в течение 5 часов, затем без использования дополнительной специальной оснастки устанавливают в изложницу и заполняют смесевым твердым топливом.

Изобретения поясняются графическим материалом и результатами испытаний органостеклопластикового материала бронечехла, изготовленного по предлагаемому способу.

На чертеже представлены составляющие элементы бронечехла.

1 - резина на основе нитрильного, этиленпропиленового, дивинилизопренового или фтор-каучука, дублированная асбестовой или асболавсановой тканью;

2 - органостеклоармировка, пропитанная теплостойким эпоксидным связующим.

Таблица 1Характеристики материала, изготовленного предлагаемым способомПоказатель, единицы измеренияЗначение показателяВязкость неотвержденного теплостойкого эпоксидного связующего, сек по В3-160Прочность на разрыв, σ, кгс/см2при температуре 20°С500100°С500145°С450Относительное удлинение, ε, %при температуре 20°С8,5100°С8,5145°С11,0Модуль упругости, Е2%, кгс/см2при температуре 20°С6500100°С7000145°С6000

Таблица 2Механические свойства материала в зависимости от геометрических параметров 2-го формующего слояФизико-механические свойства 2-го слояГеометрические параметры 2-го формующего слояσ, кгс/см2ε, %Е2%, кгс/см2Ширина органостеклоармировки, ммТолщина органостеклоармировки, ммНахлест, ммКол. проходовРасход связующего, г/м25078,56570150,10112505008,96500150,1522375

Продолжение таблицы 2Физико-механические свойства 2-го слояГеометрические параметры 2-го формующего слояσ, кгс/см2ε, %E2%, кгс/см2Ширина органостеклоармировки, ммТолщина органостеклоармировки, ммНахлест, ммКол. проходовРасход связующего, г/м25159,06700150,20335005188,76495300,10112505258,66650300,15223755058,86900300,20335005208,96700500,10112505108,46800500,15223755008,56500500,2033500

Таблица 3Прочность крепления 2-го формующего слоя бронечехла в зависимости от толщины 1-го слоя ТЗПТолщина 1-го слоя - ТЗП, ммПрочность крепления двухслойного ТЗП с СТТ, кг/см2Характер разрушения адгезионных образцов *0,59,8Когезионный по топливу, с 8-9 мм слоем СТТ на резиновой поверхности1,09,01,511,52,012,0*) Адгезионные образцы «органостеклопластик (органостеклоармировка, пропитанная теплостойким эпоксидным связующим) + двухслойный ТЗП (резина дублированная асботканью или асболавсановой тканью) + СТТ»

Из представленных данных видно, что использование теплостойкого эпоксидного связующего обеспечивает высокие физико-механические характеристики полученного материала (органостеклопластика), так, например, относительное удлинение находится на высоком уровне в пределах 8,5-11,0% в зависимости от температуры, что намного выше известных стеклопластиков, при высокой прочности на разрыв 500 кгс/см2 при температуре 20°С и 450 кгс/см2 при температуре 145°С. Бронечехол обладает значительно низким модулем упругости при температуре 20°С - 6500 кгс/см2 и 7000 и 6000 кгс/см2 при температурах 100°С и 145°С соответственно.

Высокие физико-механические характеристики полученного материала (органостеклопластика) изменяются незначительно при использовании органостеклоармировки с различными геометрическими параметрами (ширина, толщина и нахлест органостеклоармировки, количество проходов). Расход теплостойкого эпоксидного связующего напрямую зависит от геометрических параметров органостеклоармировки (ширина, толщина и нахлест, количество проходов).

Толщина 1-го слоя (ТЗП) 0,5-2,0 мм обеспечивает высокую адгезионную прочность крепления ТЗП к СТТ, находящуюся в пределах 9-12 кгс/см2 и определяющуюся прочностью СТТ.

Использование теплозащитного покрытия (ТЗП) позволяет сократить технологический процесс изготовления корпусов для заполнения и изготовления вкладных зарядов из смесевого твердого топлива к ракетным двигателям, сохраняя при этом все требуемые характеристики, предъявляемые к корпусам РД. Качество изготовления органостеклопластиковых бронечехлов с ТЗП с использованием органостеклоармировки, пропитанной теплостойким связующим составом, обеспечивает высокую надежность зарядов из СТТ к РД в течение всего гарантийного срока эксплуатации. Бронечехол для вкладного заряда из СТТ к РД готовят с использованием различных типов резин, таких как 51-2166, 51-2180, 51-2185, 51-1667 и др.

Таким образом, заявленные изобретения упрощают технологический процесс формования заряда, исключают операцию механической обработки заряда, а также исключают технологические потери смесевого твердого топлива, - все это обеспечивает снижение трудоемкости. Заявленные изобретения обеспечивают надежное крепление смесевого твердого топлива к ТЗП, тем самым гарантируют безотказную работу вкладного заряда из смесевого твердого топлива к ракетному двигателю в течение всего гарантийного срока хранения.

Похожие патенты RU2336259C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ БРОНЕЧЕХЛА ДЛЯ ВКЛАДНОГО ЗАРЯДА ИЗ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА К РАКЕТНОМУ ДВИГАТЕЛЮ И ТЕПЛОЗАЩИТНЫЙ МАТЕРИАЛ 2014
  • Архиреев Сергей Николаевич
  • Губкин Александр Михайлович
  • Гуськов Вячеслав Александрович
  • Карнаухов Юрий Гаврилович
  • Ламзина Ираида Семеновна
  • Орлова Наталья Николаевна
  • Пастор Татьяна Иосифовна
RU2557629C1
БРОНЕЧЕХОЛ ДЛЯ ВКЛАДНОГО ЗАРЯДА ИЗ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА К РАКЕТНОМУ ДВИГАТЕЛЮ 2012
  • Губкин Александр Михайлович
  • Гуськов Вячеслав Александрович
  • Клименко Юрий Георгиевич
  • Ламзина Ираида Семеновна
  • Пастор Татьяна Иосифовна
RU2487852C1
СПОСОБ КРЕПЛЕНИЯ ЗАРЯДА СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА К КОРПУСУ РАКЕТНОГО ДВИГАТЕЛЯ 2007
  • Метелёв Александр Иванович
  • Самойленко Александр Федорович
RU2338916C1
СПОСОБ ЗАЩИТЫ ВНУТРЕННЕЙ ПОВЕРХНОСТИ КОРПУСА РАКЕТНОГО ДВИГАТЕЛЯ 2003
  • Макаровец Н.А.
  • Денежкин Г.А.
  • Кобылин Р.А.
  • Семенов В.И.
  • Иванов М.М.
  • Аляжединов В.Р.
  • Петуркин Д.М.
  • Ерохин В.Е.
  • Подчуфаров В.И.
  • Семилет В.В.
  • Слемзин В.К.
  • Соколов И.Ю.
  • Калюжный Г.В.
  • Трегубов В.И.
RU2243401C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАЛОГАБАРИТНЫХ ЗАРЯДОВ СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Азанчевский Владимир Львович
  • Бобров Григорий Николаевич
  • Губкин Александр Михайлович
  • Гуськов Вячеслав Александрович
  • Ламзина Ираида Семеновна
  • Маликов Руф Сабирович
  • Орлова Наталья Николаевна
RU2473528C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОЧНОСКРЕПЛЕННОГО С КОРПУСОМ РАКЕТНОГО ДВИГАТЕЛЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2008
  • Сидоров Олег Иванович
  • Поисова Тамара Петровна
  • Хайруллин Зиятдин Ялалтдинович
  • Паршина Елизавета Ивановна
  • Метелёв Александр Иванович
  • Самойленко Александр Федорович
  • Милёхин Юрий Михайлович
  • Меркулов Владислав Михайлович
  • Банзула Юрий Борисович
  • Капитонов Александр Владимирович
  • Парфёнова Нина Никитична
RU2374213C1
ЗАРЯД ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2008
  • Валеев Наиль Сабирзянович
  • Косихина Ольга Александровна
  • Бажина Марина Геннадьевна
  • Красильников Федор Сергеевич
  • Энкин Эдуард Абрамович
  • Ощепков Валерий Юрьевич
  • Куценко Геннадий Васильевич
  • Амарантов Георгий Николаевич
  • Поваров Сергей Александрович
  • Мельник Геннадий Иванович
  • Хорев Николай Акимович
RU2367812C1
УСТРОЙСТВО ФОРМОВАНИЯ ЗАРЯДОВ ТОРЦЕВОГО ГОРЕНИЯ ИЗ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА 2012
  • Губкин Александр Михайлович
  • Гуськов Вячеслав Александрович
  • Ламзина Ираида Семеновна
  • Маликов Руф Сабирович
RU2502716C1
СПОСООБ ИЗГОТОВЛЕНИЯ ЗАРЯДА СМЕСЕВОГО РАКЕТНОГО ТВЁРДОГО ТОПЛИВА 2003
  • Метелёв А.И.
  • Самойленко А.Ф.
  • Сидоров О.И.
  • Матвеев А.А.
  • Капитонов А.В.
  • Банзула Ю.Б.
  • Меркулов В.М.
RU2242451C1
ЗАРЯД РАКЕТНОГО ТВЕРДОГО ТОПЛИВА 2004
  • Валеев Н.С.
  • Барсукова С.П.
  • Ямпольская В.Д.
  • Зверева И.Г.
  • Балабанов Г.К.
  • Державинский Н.В.
  • Колесников В.И.
  • Талалаев А.П.
RU2263812C1

Реферат патента 2008 года БРОНЕЧЕХОЛ ДЛЯ ВКЛАДНОГО ЗАРЯДА ИЗ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА К РАКЕТНОМУ ДВИГАТЕЛЮ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к ракетной технике. Бронечехол для вкладного заряда из смесевого твердого топлива (СТТ) содержит двухслойный материал, при этом первый слой, теплозащитное покрытие толщиной 0,5...2,0 мм, выполнен в виде резины, дублированной асбестовой или асболавсановой тканью, а второй слой, формующий, выполнен в виде органостеклоармировки толщиной 0,1-0,2 мм и шириной 15-50 мм, пропитанной теплостойким эпоксидным связующим. На тканевую основу теплозащитного покрытия наматывают органостеклоармировку, пропитанную теплостойким эпоксидным связующим, за 1...3 прохода с нахлестом слоев в 1...3 мм. Расход теплостойкого эпоксидного связующего составляет 250...500 г/см2. Обеспечивается изготовление качественных изделий с требуемым уровнем эксплуатационных характеристик без дополнительных капиталовложений. 2 н.п. ф-лы, 1 ил., 3 табл.

Формула изобретения RU 2 336 259 C2

1. Бронечехол для вкладного заряда из смесевого твердого топлива к ракетному двигателю, содержащий двухслойный материал, отличающийся тем, что первый слой в виде теплозащитного покрытия толщиной 0,5...2,0 мм выполнен из резины, дублированной асбестовой или асболавсановой тканью, а второй слой, формующий, выполнен в виде органо-стеклоармировки толщиной 0,1...0,2 мм и шириной 15...50 мм, пропитанной теплостойким эпоксидным связующим.2. Способ изготовления бронечехла для вкладного заряда из смесевого твердого топлива к ракетному двигателю, включающий укладку слоев, отличающийся тем, что на тканевую основу теплозащитного покрытия укладывают слой органо-стеклоармировки, пропитанной теплостойким эпоксидным связующим за 1...3 прохода с нахлестом слоев в 1...3 мм, причем расход теплостойкого эпоксидного связующего составляет 250...500 г/м2.

Документы, цитированные в отчете о поиске Патент 2008 года RU2336259C2

ЖУКОВ Б.П
Энергетические конденсированные системы
- М.: Янус-К, 2000, с.264
СПОСОБ НАНЕСЕНИЯ БРОНИРУЮЩЕГО ПОКРЫТИЯ НА ЗАРЯД ИЗ ДВУХОСНОВНОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА БАЛЛИСТИТНОГО ТИПА 2003
  • Куценко Г.Н.
  • Степанов Е.С.
  • Красильников Ф.С.
  • Балахнина Е.В.
  • Филимонова Е.Ю.
  • Летов Б.П.
  • Андрейчук В.А.
  • Багимова З.И.
  • Новикова О.Н.
  • Талалаев А.П.
  • Кузьмицкий Г.Э.
RU2240299C2
СПОСОБ БРОНИРОВАНИЯ ЗАРЯДОВ ИЗ БАЛЛИСТИТНОГО ТВЕРДОГО РАКЕТНОГО ТОПЛИВА 2004
  • Козьяков А.В.
  • Летов Б.П.
  • Пупин Н.А.
  • Молчанов В.Ф.
  • Красильников Ф.С.
  • Никитин В.Т.
RU2263577C1
US 3650858 А, 21.03.1972.

RU 2 336 259 C2

Авторы

Албутова Раиса Егоровна

Красильников Федор Сергеевич

Артемова Ольга Викторовна

Летов Борис Павлович

Амарантов Георгий Николаевич

Колесников Виталий Иванович

Куценко Геннадий Васильевич

Колач Петр Кузмич

Даты

2008-10-20Публикация

2006-07-20Подача