КООРДИНАТНЫЙ ГАЗОНАПОЛНЕННЫЙ ДЕТЕКТОР ИЗЛУЧЕНИЯ Российский патент 2008 года по МПК G01T1/18 

Описание патента на изобретение RU2339053C2

Изобретение относится к координатным газонаполненым детекторам излучения и может быть использовано в лабораториях, занимающихся исследованиями в области экспериментальной физики, молекулярной биологии, металлофизики, проводимыми в экстремально высокоинтенсивных потоках заряженных частиц или рентгеновского излучения.

В настоящее время в экспериментах на ускорителях широко применяются координатные детекторы на основе тонкостенных дрейфовых трубок (строу), примерами этому являются трекеры SDC [1], TRT ATLAS [2] и COMPASS [3, 4]. Детекторы состоят из ряда плоскостей, содержащих плотно расположенные друг к другу строу диаметром обычно от 4 мм до 10 мм и длиной от ˜40 см [2, 5] до ˜400 см [1, 3, 4]. При прохождении частицы через строу регистрируется ее координатная точка в пространстве путем измерения времени дрейфа ближайших электронов ионизации к аноду строу, расположенному по оси трубки. Считывание информации осуществляется с одного конца строу. Реально, за чувствительное время строу регистрируется одно событие, при прохождении через строу большего числа частиц возникает часто не имеющая решение неопределенность. Чувствительное время (τ) определяется максимальным временем дрейфа электронов от катода (внутренняя поверхность цилиндрической стенки трубки) до анодной проволоки (диаметром обычно 20-50 микрон величиной) и быстродействием используемой считывающей электроники. Таким образом, гранулированность детектора (G) определяется произведением чувствительной длины строу на ее диаметр, а время восстановления (О) определяется выражением O=100·(N·G·τ)%. С возрастанием величины О уменьшается эффективность как регистрации излучения детектором, так и эффективность использования полученной с детектора информации. Для работы детекторов в условиях высокой загрузки частицами используются строу малого диаметра и минимизируется их длина.

Известны аналоги координатных детекторов на основе тонкостенных дрейфовых трубок [2, 5]. Основным недостатком их является высокая величина "занятости" О из-за большой величины их гранулированности. Так, для детектора переднего направления TRT ATLAS чувствительная длина строу 38 см, что соответствует гранулированности более 15 см2.

Наиболее близким к предлагаемому устройству являются детекторы бокового направления TRT ATLAS [6] с длиной строу ˜150 см, что соответствует гранулированности ˜60 см2. Для повышения гранулированности для части строу их анод состоит из двух изолированных проволок и считывание осуществляется с обоих концов строу независимо. При этом гранулированность канала регистрации уменьшается до 30 см2. С целью большего понижения гранулированности каналов регистрации другой части строу этих детекторов их аноды состоят из трех изолированных друг от друга участков. Считывание осуществляется с концов строу, внутренняя часть этих строу является нечувствительной к проходящему излучению. Основным недостатком этого аналога является высокая гранулированность каналов регистрации строу большой длины. Использования металлической внутренней втулки вносит большое количество вещества в детектор, что в подавляющем большинстве случаев недопустимо. Попытка считывания информации с центральных участков сегментного анода через стенки строу в аналоге не нашла технического решения для создания многосегментных анодов.

Техническая задача состоит в создании координатных строу детекторов с большой чувствительной площадью и высокой их гранулированностью для обеспечения низкой величины их времени восстановления с целью обеспечения регистрации большого числа одновременно проходящих частиц с высокой эффективностью и хорошим пространственным разрешением.

Техническая задача решается созданием детектора на основе тонкостенных дрейфовых трубок (строу) с многосегментными гальванически раздельными анодами, включающего тонкостенную дрейфовую трубку с расположенным по центру сегментным проволочным анодом, соединяющие соседние анодные сегменты капиллярные трубки, в устройство введены дополнительные капиллярные трубки без и с дополнительными контактными проволоками, гальванически соединенными с соответствующими анодными сегментами, при этом капиллярные трубки с контактными проволоками соединены в единый конструктивный узел с изоляционными поддерживающими их втулками, служащими для вывода контактных проволок извне тонкостенной дрейфовой трубки.

На прилагаемом чертеже представлена блок-схема предлагаемого устройства.

Блок-схема содержит дискретный элемент 1 детектора (представляющий собой тонкостенную дрейфовую трубку), установленный по оси трубки проволочный анод 2 с соединительными капиллярными трубками 3, поддерживающие (спейсерные) втулки 4 с выходящими наружу контактами 5 для считывания координатной информации, концевые втулки 6 для фиксации анода по центру тонкостенной дрейфовой трубки.

Координатный детектор содержит обычно одну или несколько плоскостей, состоящих из расположенных рядом тонкостенных пленочных дрейфовых трубок 1 диаметром 4 мм или более. Проволочный анод 2 (обычно диаметром 30 мкм) состоит из дискретных проволочных элементов (сегментов), объединенных между собой впаиванием их в стеклянные капиллярные трубки 3. В центре капилляра создается изоляционная перемычка, обеспечивающая гальванически раздельное соединение соседних сегментов анода [6, 7]. Крайние на сегментном аноде капиллярные объединения выполняют только это назначение. Длина капиллярных трубок 4 мм или более, внутренний и наружный диаметры около 100 мкм и 250 мкм соответственно. Центральные капиллярные соединения имеют впаянные в них дополнительные контактные проволоки 5, гальванически соединенные при их впаивании с соответствующим анодным сегментом. При сборке многосегментного анода каждый содержащий дополнительную контактную проволоку капилляр соединяется с поддерживающей втулкой 4 в единый конструкционный узел. Нечетные капиллярные объединения выполняют назначение только гальванически раздельного соединения соседних анодных сегментов, а четные капиллярные соединения, имеющие впаянные в них контактные проволоки 5, используются для считывания информации с двух соседних анодных сегментов. Поддерживающие втулки выполнены из изоляционного материала и имеют ряд функциональных отверстий. Контактные проволоки 5 фиксируются во втулке, проходя через несколько отверстий. После сборки многосегментный анод устанавливается в тонкостенную дрейфовую трубку с требуемым его натяжением и фиксируется в концевых втулках 6. Через отверстия в стенке тонкостенной дрейфовой трубки 1 и поддерживающей втулки 4 контактные проволоки 5 выводятся наружу и служат в дальнейшем для считывания информации с соответствующего анодного сегмента. Отверстия в стенках тонкостенных пленочных дрейфовых трубок герметично закрываются.

Устройство работает следующим образом. Для обеспечения внутри тонкостенной дрейфовой трубки необходимого электрического поля между катодом и анодом подается разность потенциалов, величина которой зависит от вида газового наполнения трубки и диаметров анода и катода. Высокое напряжение может подаваться на сегментные аноды через контактные проволоки. Катод трубки находится под потенциалом земли. Информация с центральных анодных сегментов считывается через контактные проволоки через проходные конденсаторы, с двух крайних сегментов анода считывается традиционным способом с контактов концевых элементов трубок. Возможна подача высокого напряжения на катод, информация в этом случае считывается с находящих под потенциалом земли анодных сегментов.

При использовании для создания детектора тонкостенных дрейфовых трубок с n сегментными анодами дискретным элементом будет являться тонкостенная дрейфовая трубка, а занятость детектора определяться выражением О≅100·(N·G·τ/n)%.

Для детекторов с большим аксептенсем типичным является неравномерная загрузка по их площади. Использование при создании детектора сегментов анодов с переменной длиной позволяет оптимизировать число регистрационных каналов в соответствии с требуемой занятостью детектора.

При создании n-сегментного устройства с равной длиной сегментов гранулированность сегмента будет уменьшена в n раз, общая неэффективная длина устройства составит величину l·n≅7n мм, где l - средняя длина поддерживающего узла, радиационная толщина этих участков увеличится до ˜0,4% Х0, что незначительно. Уменьшение занятости в n раз позволяет с этим же фактором повысить интенсивность потока излучения.

Источники информации

1. Y.Arai et al., Nucl. Instr. And Meth. A381 (1996) 355-365.

2. ATLAS collaboration. ATLAS Inner Detector Technical Design Report, v.1, CERN/LHCC/97-16, 1997.

3. V.N.Bytchkov, M.Faessler, R.Geyer et al., Particles and Nuclei, Letters, 2002, №2 |111|, p.64-73.

4. V.N.Bytchkov, N.Dedek, W.Dunnweber et al., Nucl. Instr. And Meth. A556 (2006) 66-79.

5. И.В.Богуславский, В.Н.Бычков, К.С.Вирясов и др. Письма в ЭЧАЯ, 2006, т.3, №3(132), с.103-110.

6. S.H.Oh, C.H.Wang, W.L.Ebenstein, Nucl. Instr. And Meth. A425 (1999) 75-83.

7. K.S.Viriasov, Ju.V. Gusakov, I.A.Yhukov et al., ОИЯИ Р13-2005-127.

Похожие патенты RU2339053C2

название год авторы номер документа
КООРДИНАТНЫЙ ГАЗОНАПОЛНЕННЫЙ ДЕТЕКТОР 2011
  • Жуков Игорь Алексеевич
  • Мялковский Владимир Владимирович
  • Пешехонов Владимир Дмитриевич
  • Рабцун Сергей Васильевич
  • Русакович Николай Артемьевич
  • Топилин Николай Дмитриевич
RU2485547C1
СПОСОБ РЕГИСТРАЦИИ ЧАСТИЦ ДЕТЕКТОРАМИ НА ОСНОВЕ ДРЕЙФОВЫХ ТРУБОК 2013
  • Пешехонов Владимир Дмитриевич
  • Васильев Сергей Евгеньевич
  • Зинченко Александр Иванович
  • Мялковский Владимир Владимирович
RU2530436C1
ДРЕЙФОВАЯ КАМЕРА ДЛЯ РАБОТЫ В ВАКУУМЕ 2011
  • Глонти Леван Николаевич
  • Кекелидзе Владимир Димитриевич
  • Потребеников Юрий Константинович
RU2465620C1
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ЦИЛИНДРИЧЕСКИХ ТРУБОК ДЛЯ ГАЗОНАПОЛНЕННЫХ ДРЕЙФОВЫХ ДЕТЕКТОРОВ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ 2014
  • Мовчан Сергей Александрович
  • Елша Владимир Владимирович
  • Ершов Юрий Владимирович
  • Шкаровский Сергей Николаевич
  • Потребеников Юрий Константинович
  • Кекелидзе Владимир Димитриевич
  • Кислов Евгений Мстиславович
  • Еник Темур Львович
  • Азорский Николай Иванович
  • Колесников Александр Олегович
RU2555693C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МЕСТОПОЛОЖЕНИЯ ПРОВОЛОК В ГАЗОВЫХ ПРОВОЛОЧНЫХ КАМЕРАХ 2014
  • Глонти Леван
  • Кекелидзе Владимир Димитриевич
  • Потребеников Юрий Константинович
  • Самсонов Вячеслав Александрович
  • Еник Темур Львович
  • Колесников Александр Олегович
  • Мовчан Сергей Александрович
  • Сотников Александр Николаевич
RU2602492C2
ДРЕЙФОВАЯ КАМЕРА ДЛЯ РАБОТЫ В ВАКУУМЕ 2013
  • Глонти Леван Николаевич
  • Потребеников Юрий Константинович
  • Чепурнов Владимир Федорович
RU2529456C1
Дрейфовая камера 1976
  • Борисов Анатолий Андреевич
  • Глебов Владимир Юрьевич
  • Фахрутдинов Ринат Макаримович
  • Полетаев Владимир Иванович
SU600637A1
БАТАРЕЯ ТРУБЧАТЫХ ТВЕРДООКСИДНЫХ ЭЛЕМЕНТОВ С ТОНКОСЛОЙНЫМ ЭЛЕКТРОЛИТОМ ЭЛЕКТРОХИМИЧЕСКОГО УСТРОЙСТВА И УЗЕЛ СОЕДИНЕНИЯ ТРУБЧАТЫХ ТВЕРДООКСИДНЫХ ЭЛЕМЕНТОВ В БАТАРЕЮ (ВАРИАНТЫ) 2016
  • Спирин Алексей Викторович
  • Липилин Александр Сергеевич
  • Паранин Сергей Николаевич
  • Никонов Алексей Викторович
  • Хрустов Владимир Рудольфович
  • Иванов Виктор Владимирович
RU2655671C2
ПОСТРОЕНИЕ ИЗОБРАЖЕНИЯ ПО ЗАРЯЖЕННЫМ ЧАСТИЦАМ, СОЗДАВАЕМЫМ КОСМИЧЕСКИМИ ЛУЧАМИ 2009
  • Моррис Кристофер Л.
  • Шультц Ларри Джо
  • Грин Джесси Эндрю
  • Соссонг Майкл Джеймс
  • Бороздин Константин Н.
  • Клименко Алексей В.
  • Блэнпид Гари
  • Тумаков Владимир
  • Вамба Коло
RU2503953C2
Газоразрядная камера с волоконно-оптическим съемом информации 1985
  • Бузулуцков Алексей Федорович
  • Васильченко Владимир Георгиевич
  • Турчанович Леонид Константинович
SU1341689A1

Реферат патента 2008 года КООРДИНАТНЫЙ ГАЗОНАПОЛНЕННЫЙ ДЕТЕКТОР ИЗЛУЧЕНИЯ

Изобретение относится к координатным газонаполненым детекторам излучения и может быть использовано в области экспериментальной физики, молекулярной биологии, металлофизики для работ в высокоинтенсивных потоках заряженных частиц или рентгеновского излучения. Сущность: проволочный анод состоит из дискретных проволочных элементов, объединенных между собой впаиванием их в стеклянные капиллярные трубки, имеющие изоляционные перемычки. Центральные капиллярные соединения имеют впаянные в них дополнительные контактные проволоки, гальванически соединенные с соответствующими анодными сегментами и используемые для считывания информации с соответствующих сегментов. Информация с крайних сегментов анода считывается с контактов концевых элементов трубок. Технический результат: использование при создании детектора сегментов анодов с переменной длиной позволяет оптимизировать число регистрационных каналов в соответствии с требуемой загрузкой детектора частицами. 1 ил.

Формула изобретения RU 2 339 053 C2

Координатный газонаполненный детектор излучения, включающий тонкостенные дрейфовые трубки (строу) с многосегментными гальванически раздельными анодами, выполненными в виде проволочек и расположенными по центру дрейфовой трубки, при этом соседние анодные сегменты соединены капиллярными трубками, отличающийся тем, что в дрейфовые трубки введены дополнительные капиллярные трубки, часть которых снабжена дополнительными контактными проволоками, гальванически соединенными с соответствующими анодными сегментами, при этом дополнительные капиллярные трубки объединены в единый конструктивный узел с изоляционными поддерживающими их втулками, служащими для вывода контактных проволок извне тонкостенной дрейфовой трубки.

Документы, цитированные в отчете о поиске Патент 2008 года RU2339053C2

S.H.Oh, C.H.Wang, W.L.Ebenstein, Nucl
Instr
and Meth
ПРИБОР ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ТЕЧЕНИЯ ВОДЫ И ОДНОВРЕМЕННОГО ПОЛУЧЕНИЯ ПРОБ ЕЕ 1925
  • Глушков В.Г.
SU425A1
Газоразрядный координатно-чувствительный детектор ионизирующего излучения (его варианты) 1981
  • Гоганов Дмитрий Алексеевич
  • Овчинников Евгений Константинович
SU1080225A1
US 4197462 A1, 08.04.1980
Устройство для демонтажа и монтажа деталей винторулевого комплекса судна 1985
  • Арабьян Левон Карапетович
  • Войнич Виктор Григорьевич
  • Люфт Альберт Владимирович
  • Минеев Вячеслав Александрович
SU1320119A1
US 4289967 A, 15.09.1981.

RU 2 339 053 C2

Авторы

Мялковский Владимир Владимирович

Пешехонов Владимир Дмитриевич

Савенков Андрей Андреевич

Даты

2008-11-20Публикация

2006-12-06Подача