HIGHLY PRODUCTIVE METHOD OF DEPOSITING CARBON NANOTUBES AND COMPOSITE FILMS Russian patent published in 2008 - IPC B82B3/00 B32B9/00 

Abstract RU 2342316 C2

FIELD: nanotechnology.

SUBSTANCE: present invention pertains to means of forming a structure based on carbon nanotubes and can be used when making flexible optically transparent conducting coatings, flexible small-scale integration integrated circuits, test structures for a scanning probe microscope, resistive sensors etc. A drop of colloid solution of carbon nanotubes, containing a surface active substance in quantity, sufficient for stabilisation of the colloidal state of the solution, as well as 5-60 vol.% glycerine, sufficient for formation of a drop colloidal solution of a give size, are deposited on a given point on a substrate. For this purpose, the colloidal solution is put into the device, which transfers it to the printing head of a jet-printer. The device is in form of a catridge or a system for continuous supply of the colloidal solution. The substrate is moved using a system, in form of a paper-moving mechanism of a jet printer, or in form of a compact disc movement system. Removal of all components of the colloidal solution except carbon nanotubes, is achieved by evaporation and/or washing in a solvent. To obtain a composite film, carbon nanotubes are deposited on a substrate, in turns, with liquid components of a polymer or simultaneously with the liquid components of the polymer. The liquid components of the polymer are solidified while fusing their microdroplets, or under the effect of electromagnetic radiation, heating or as a result of evaporation of volatile components under atmospheric conditions. Viscosity of liquid components of the polymer corresponds to the microhydraulic system of the jet-printer. The liquid components of the polymer are deposited on the substrate by transferring them to the printing head of the jet printer. The method is characterised by high output and resolving power of depositing carbon nanotubes and composite films on a substrate and reduced cost.

EFFECT: highly productive and cheap method.

2 cl, 2 ex

Similar patents RU2342316C2

Title Year Author Number
METHOD OF PRODUCING THIN LAYERS OF GRAPHENE OXIDE WITH FORMATION OF A SUBLAYER OF CARBON NANOTUBES 2018
  • Romashkin Aleksej Valentinovich
  • Struchkov Nikolaj Sergeevich
  • Levin Denis Dmitrievich
  • Polikarpov Yurij Aleksandrovich
  • Komarov Ivan Aleksandrovich
  • Kalinnikov Aleksandr Nikolaevich
  • Nelyub Vladimir Aleksandrovich
  • Borodulin Aleksej Sergeevich
RU2693733C1
COATING FOR PHOTOVOLTAIC CELL AND METHOD OF MAKING SAME 2014
  • Desjatov Andrej Viktorovich
  • Aseev Anton Vladimirovich
  • Bulibekova Ljubov Vladimirovna
  • Ginatulin Jurij Midkhatovich
  • Grafov Dmitrij Jurevich
  • Li Ljubov Densunovna
RU2577174C1
GAS-SENSITIVE COMPOSITE AND METHOD OF ITS PRODUCTION 2018
  • Varfolomeev Andrej Evgenevich
  • Volkov Ivan Aleksandrovich
  • Solovej Valentin Romanovich
  • Tomas Meder
RU2688742C1
METHOD OF MANUFACTURING POLYMER COMPOSITE WITH ALIGNED ARRAY OF CARBON NANOTUBES OF CONTROLLED DENSITY 2011
  • Konoplev Boris Georgievich
  • Ageev Oleg Alekseevich
  • Sjurik Julija Vital'Evna
RU2478563C2
METHOD OF INCREASING TENSILE STRENGTH OF COMPOSITE MATERIAL BY MEANS OF PRELIMINARY IMPREGNATION OF CARBON FIBERS 2018
  • Romashkin Aleksej Valentinovich
  • Struchkov Nikolaj Sergeevich
  • Levin Denis Dmitrievich
  • Polikarpov Yurij Aleksandrovich
  • Komarov Ivan Aleksandrovich
  • Kalinnikov Aleksandr Nikolaevich
  • Nelyub Vladimir Aleksandrovich
  • Borodulin Aleksej Sergeevich
RU2703635C1
METHOD FOR PRODUCING MULTILAYER CUO/C NANOCOMPOSITE FILMS WITH SENSOR PROPERTIES IN WIDE SPECTRAL OPTICAL RANGE 2023
  • Pugachevskii Maksim Aleksandrovich
  • Nei Ving Aung
RU2810420C1
RESISTIVE SENSOR WITH TRANSPARENT CONDUCTIVE ELECTRODE 2015
  • Bobrinetskij Ivan Ivanovich
  • Komarov Ivan Aleksandrovich
  • Rubtsova Ekaterina Nikolaevna
  • Emelyanov Aleksej Vladimirovich
  • Fedorov Igor Vyacheslavovich
RU2609793C1
ANTI-DYNATRON COATING BASED ON A POLYMER MATRIX WITH THE INCLUSION OF CARBON NANOTUBES AND A METHOD FOR ITS PREPARATION 2020
  • Shemukhin Andrej Aleksandrovich
  • Tatarintsev Andrej Andreevich
  • Vorobeva Ekaterina Andreevna
  • Chechenin Nikolaj Gavrilovich
RU2745976C1
METHOD FOR INCREASING THE TENSILE STRENGTH OF FIBROUS COMPOSITES BY STRENGTHENING THE MATRIX-FILLER INTERFACE OF CARBON FIBERS WITH FUNCTIONALIZED CARBON NANOTUBES 2019
  • Nelyub Vladimir Aleksandrovich
  • Orlov Maksim Andreevich
  • Kalinnikov Aleksandr Nikolaevich
  • Borodulin Aleksej Sergeevich
  • Komarov Ivan Aleksandrovich
  • Levin Denis Dmitrievich
  • Romashkin Aleksej Valentinovich
  • Polikarpov Yurij Aleksandrovich
  • Struchkov Nikolaj Sergeevich
RU2743565C1
TRANSPARENT CONDUCTING LARGE-AREA COATINGS, INCLUDING DOPED CARBON NANOTUBES AND NANO-WIRE COMPOSITE MATERIALS, AND METHODS FOR OBTAINING THEREOF 2011
  • Veerasami Vidzhajen S.
RU2578664C2

RU 2 342 316 C2

Authors

Khartov Stanislav Viktorovich

Barash Sergej Vladimirovich

Nevolin Vladimir Kirillovich

Dates

2008-12-27Published

2006-11-13Filed