Изобретение относится к области телеметрических систем и может использоваться для дистанционного контроля параметров объектов, в частности температуры подшипников колесных пар железнодорожных вагонов.
Известна радиометка телеметрической системы идентификации объектов [патент РФ 2222030], состоящая из антенны, генератора, устройства питания, устройства синхронизации и запоминающего устройства.
Недостатком данного устройства является невозможность изменять формат данных в процессе эксплуатации и передавать меняющиеся данные.
Наиболее близким устройством является пассивная радиометка системы автоматической идентификации [патент РФ №2097783, G01S 13/75], содержащая соединенные приемопередающую антенну, согласующий трансформатор и выпрямляющее устройство, нелинейный элемент, постоянное запоминающее устройство, при этом выход выпрямляющего устройства подключен к входу питания постоянного запоминающего устройства, нелинейный элемент подключен к выходу постоянного запоминающего устройства в качестве нагрузки.
Недостатками данного устройства является невозможность передавать меняющиеся данные.
Техническим результатом предлагаемого изобретения является возможность дистанционного измерения параметров объекта с использованием пассивных радиометок.
Предлагаемый технический эффект достигается за счет введения в радиометку датчика контроля параметра, источника тока и аналого-цифрового преобразователя.
На чертеже показана структурная схема радиометки.
Радиометка системы автоматической радиочастотной идентификации содержит приемопередающую антенну 1, согласующее устройство 2, нелинейный элемент 3, выпрямляющее устройство 4 и генератор кода 5. Приемопередающая антенна 1, выполненная в виде симметричного полуволнового излучателя, одной четвертьволновой частью соединена с первым, а второй четвертьволновой частью - со вторым входами согласующего устройства 2. Основная задача согласующего устройства 2 состоит в согласовании приемопередающей антенны 1 с остальной частью радиометки и увеличении значения входного высокочастотного сигнала до значения, необходимого для питания генератора кода 5. Так как в качестве генератора кода используются интегральные микросхемы, как правило, созданные по технологиям МОП, то уровень напряжения питания, то есть ЭДС между первым и вторым входами генератора кода 5, должен составлять минимум 1,5...3,0 вольт. В пассивных радиометках, т.е. не содержащих источников тока, средний потребляемый генератором кода 5 ток должен иметь значение не более 10-4 А. В данном случае умножитель напряжения имеет два входа и два выхода. Приемопередающая антенна 1 выполнена в виде симметричного полуволнового излучателя, одной четвертьволновой частью она соединена с первым, а второй четвертьволновой частью - со вторым входами согласующего устройства 2, первый выход которого соединен с первым выходом нелинейного элемента 3 и первым входом выпрямляющего устройства 4, а второй выход согласующего устройства 2 соединен со вторым выходом нелинейного элемента 3, со вторым входом выпрямляющего устройства 4 и вторым входом генератора кода 5. Часть информации, генерируемая генератором кода 5, содержит данные, приходящие с аналогово-цифрового преобразователя (АЦП) 6, на вход которого поступает сигнал со средней точки цепочки, образованной последовательным соединением источника тока 7 и датчика параметра 8.
Приемопередающая антенна 1 конструктивно выполнена на плате датчика, полученного в результате травления.
В качестве согласующего устройство 2 может быть выполнено как четверть волновой микрополосковый трансформатор из медного проводника или в виде резонансного LC-контура.
Выпрямляющее устройство 4 может быть выполнено на двух диодах Шотки и конденсаторе по схеме удвоения напряжения. Выпрямляющее устройство 4 также содержит ограничитель напряжения. В качестве ограничителя напряжения сверху могут быть использованы стабилитрон на соответствующее напряжение (ограничение по напряжению сверху) и супервизоры (генераторы сброса), например DS 1810/11/12/16/17, DS1833 (ограничение по напряжению снизу).
В качестве АЦП 6 и генератора кода 5 может быть использована микросхема со сверхнизким потреблением типа PIC12F683.
Для увеличения энергетической накачки приемопередающая антенна радиометки выполнена как направленная антенна с рефлектором.
Для измерения температуры датчик параметра 8 выполнен в виде терморезистора.
Для измерения концентрации газов в качестве датчика параметра 8 могут использоваться различные датчики газов, например датчики, предназначенные для преобразования парциального давления кислорода (рО2) или водорода (рН2) в газовых смесях в аналоговый сигнал постоянного напряжения [http://www.insovt.ru/o2sensors/].
Для измерения уровня излучения в качестве датчика параметра 8 могут использоваться, например, датчики УФ [http://daily.sec.ru/dailypblshow.cfm?rid=17&pid=17384]. Измерение дозы УФ-облучения сводится к простому измерению внутреннего сопротивления структуры при ее прямом включении.
Для измерения давления в качестве датчика параметра 8 могут использоваться, например, датчики-преобразователи давления в электрический сигнал на основе пьезоэффекта.
В качестве источника тока 7 могут использоваться, например, источники стабильного тока на полевых транзисторах [Ю.Ф.Опадчий, О.П.Глудкин, А.И.Гуров. Аналоговая и цифровая электроника: Учебник для ВУЗов. / Изд. Горячая линия - Телеком, 2002, с.226].
В качестве нелинейного элемента может использоваться, например, полевой транзистор или диод.
Датчик работает следующим образом.
Перед установкой радиометки на объект идентификации радиометка программируется. Идентификационная информация записывается любым известным способом в генератор кода 5.
В отсутствие облучения отсутствует напряжение питания в радиометке.
Когда радиометка попадает в зону диаграммы направленности антенны считывателя системы автоматической идентификации, электромагнитная энергия через приемопередающую антенну 1 и согласующее устройство 2 поступает на выпрямляющее устройство 4, где выпрямляется высокочастотными диодами и емкостью. Если выпрямленное напряжение превышает максимально допустимое напряжение для генератора кода 5, происходит ограничение напряжения стабилитроном, если выпрямленное напряжение меньше допустимого, то супервизор не подает напряжение на генератор кода 5 до тех пор, пока напряжение на нем не достигнет необходимого уровня. После появления напряжения питания на генераторе кода 5 и, следовательно, на источнике тока 7 генератор тока 7 вырабатывает постоянный стабильный ток в нагрузке, которой является датчик параметра 8. В качестве датчика параметра 8 может выступать любой электрорадиоэлемент, имеющий зависимость внутреннего сопротивления от какого-либо параметра. Для понимания проходящих процессов рассмотрим терморезистор, имеющий зависимость сопротивления от температуры. Так как ток, генерируемый источником тока 7, является постоянным и не зависит от нагрузки, а при изменении температуры изменяется сопротивление терморезистора (датчика параметра 8), то, соответственно, и изменяется напряжение, падающее на терморезисторе (датчике параметра 8). Это напряжение поступает на вход АЦП 6, которое его преобразовывает в цифровой код, который в свою очередь записывается в определенную область идентификационной информации, после чего происходит циклическая передача данной информации с выхода генератора кода 5 на управляющий вход нелинейного элемента 3, который в свою очередь, изменяя согласование приемопередающей антенны 1 радиометки, производит амплитудную модуляцию отраженного от приемопередающей антенны электромагнитного излучения в соответствии с идентификационной информацией.
Так как в качестве генератора кода 5 используется микропроцессор со встроенным АЦП, то алгоритм записи данных с АЦП в идентификационную информацию и ее генерации предварительно записывается в память микропроцессора.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА АВТОМАТИЧЕСКОЙ РАДИОЧАСТОТНОЙ ИДЕНТИФИКАЦИИ | 2007 |
|
RU2350979C2 |
АВТОМАТИЗИРОВАННАЯ СИСТЕМА СЧИТЫВАНИЯ ИДЕНТИФИКАЦИОННОЙ ИНФОРМАЦИИ С ПОДВИЖНЫХ ОБЪЕКТОВ | 2005 |
|
RU2320510C2 |
СПОСОБ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ПОДВИЖНОГО СОСТАВА НА МНОГОПУТНЫХ УЧАСТКАХ ЖЕЛЕЗНОЙ ДОРОГИ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2005 |
|
RU2314956C2 |
УСТРОЙСТВО ФИКСАЦИИ ПРОХОЖДЕНИЯ КОЛЕСНОЙ ПАРЫ | 2008 |
|
RU2379209C1 |
СПОСОБ И СИСТЕМА ПРИЦЕЛЬНОЙ ОСТАНОВКИ ЖЕЛЕЗНОДОРОЖНЫХ ТРАНСПОРТНЫХ СРЕДСТВ | 2009 |
|
RU2397094C1 |
СИСТЕМА АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ДЛЯ ДВУХПУТНЫХ УЧАСТКОВ ЖЕЛЕЗНЫХ ДОРОГ | 2005 |
|
RU2314955C2 |
СИСТЕМА ИДЕНТИФИКАЦИИ ОБЪЕКТОВ | 2011 |
|
RU2454717C1 |
КОДОВЫЙ БОРТОВОЙ ДАТЧИК ИДЕНТИФИКАЦИИ ДЛЯ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ СЪЕМА ИНФОРМАЦИИ С ПОДВИЖНОГО СОСТАВА | 2007 |
|
RU2346841C1 |
СПОСОБ СЧИТЫВАНИЯ ИНФОРМАЦИИ С РАДИОЧАСТОТНОЙ МЕТКИ КОЛЕСНОЙ ПАРЫ И СИСТЕМА, РЕАЛИЗУЮЩАЯ ДАННЫЙ СПОСОБ | 2005 |
|
RU2314957C2 |
ПРИЕМООТВЕТЧИК ТЕЛЕМЕТРИЧЕСКОЙ СИСТЕМЫ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ | 1993 |
|
RU2097783C1 |
Изобретение относится к области телеметрических систем и может использоваться для дистанционного контроля параметров объектов, в частности температуры подшипников колесных пар железнодорожных вагонов. Техническим результатом предлагаемого изобретения является возможность дистанционного измерения параметров объекта с использованием пассивных радиометок. Результат достигается за счет введения в известную радиометку датчика контроля параметра, источника тока и аналого-цифрового преобразователя. В качестве датчика параметра может выступать любой электрорадиоэлемент, имеющий зависимость внутреннего сопротивления от какого-либо параметра, например термосопротивления. В качестве АЦП и генератора идентификационного кода может быть использована микросхема со сверхнизким потреблением, например типа PIC12F683. 4 з.п. ф-лы, 1 ил.
ПРИЕМООТВЕТЧИК ТЕЛЕМЕТРИЧЕСКОЙ СИСТЕМЫ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ | 1993 |
|
RU2097783C1 |
ПРИЕМООТВЕТЧИК ТЕЛЕМЕТРИЧЕСКОЙ СИСТЕМЫ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ | 1992 |
|
RU2018868C1 |
УЗЕЛ ДРОССЕЛЬНЫХ ЗАСЛОНОК | 0 |
|
SU254954A1 |
US 4075632 A, 21.02.1978 | |||
СПОСОБ ИЗМЕРЕНИЯ ВИБРАЦИОННЫХ ПАРАМЕТРОВ МАЛОУДАЛЕННЫХ ОБЪЕКТОВ | 1999 |
|
RU2158006C1 |
СИСТЕМА ИДЕНТИФИКАЦИИ ОБЪЕКТОВ | 2001 |
|
RU2222030C2 |
Авторы
Даты
2008-12-27—Публикация
2007-05-08—Подача