СПОСОБ ИЗМЕРЕНИЯ ВИБРАЦИОННЫХ ПАРАМЕТРОВ МАЛОУДАЛЕННЫХ ОБЪЕКТОВ Российский патент 2000 года по МПК G01S13/02 

Описание патента на изобретение RU2158006C1

Изобретение относится к радиолокационным методам (способам) и предназначено для определения параметров близкорасположенных (малоудаленных) вибрирующих объектов по гармоническим составляющим отраженного сигнала.

Известны способ и устройство измерения параметров и классификации объектов [1], предназначенные для воспроизведения условного обозначения пеленгуемого воздушного объекта. Способ заключается в излучении модулированного зондирующего сигнала в направлении объекта, приеме отраженного от объекта сигнала, его частотой фильтрации, детектировании и корреляционной обработке. По степени соответствия отраженного сигнала эталонному судят о параметрах воздушного объекта.

Описанный способ не обеспечивает высокой точности определения вибрационных параметров объектов, поскольку отраженный сигнал содержит в себе большую долю информации, обусловленную другими более ярко выраженными физическими явлениями (рыскания, крены полета, изменение ракурса локации). При корреляционной обработке не учитывается конкретный вклад какого-либо определенного параметра в модуляцию отраженного сигнала. Таким образом, вибрационные параметры объекта не могут быть определены с достаточной точностью.

Известен также способ измерения (распознавания) параметров сопровождаемых воздушных объектов [2] , совершающих линейные перемещения и вибрации различной амплитуды. Данный способ заключается в том, что передатчик РЛС непрерывно вырабатывает импульсно-модулированный сигнал сверхвысоких частот, который через антенну излучается в пространство в направлении объекта. Отраженные объектом сигналы принимаются этой же антенной и направляются в приемник. Отраженные сигналы в течение нескольких периодов повторения импульсов объединяются с сигналами, имеющими такую же частоту, но постоянную начальную фазу. В результате такого объединения формируется сигнал, частота которого равна частоте объединяемых сигналов, а амплитуда модулирована за счет изменения фазы между отраженными и опорными сигналами. Изменение фазы возникает в результате перемещений и вибраций воздушного объекта. Амплитудно-модулированный сигнал фильтруется и детектируется, что позволяет выделить модуляционную составляющую. Данная составляющая в соответствии с параметрами вибрации объекта воспроизводится в виде звукового сигнала определенного тембра в головных телефонах оператора РЛС. По тембру звука оператор определяет класс воздушного объекта.

Данный способ не может обеспечить высокую точность распознавания параметров воздушных объектов, так как цели разных классов на различных скоростях и ракурсах могут иметь одинаковую амплитуду и период вибраций, что повышает ошибки распознавания. Способ имеет низкую точность определения вибрационных параметров как удаленных, так и близких объектов, так как окраска звука (тембр) является низкоинформативным признаком распознавания, существенно зависящим от идентификационных способностей оператора РЛС.

Задачей изобретения является повышение точности определения вибрационных параметров объектов, находящихся на небольшом расстоянии от РЛС. Указанная задача (цель) является актуальной, поскольку она позволяет использовать радиолокационную технику для решения многих народнохозяйственных задач специального назначения. Так, например, можно проверять качество работы двигателей внутреннего сгорания и электродвигателей по амплитуде их вибраций на различных оборотах. Способ можно использовать для оценки величины вибрирования и качания вагонов поездов в наиболее опасных участках железной дороги. Можно оценивать также вибрации газотурбинных агрегатов, амплитуды вибраций высоких заводских труб, удерживаемых канатами и тросами, вибраций подвесных мостов при заданном уровне бокового ветра и т.п.

Для достижения цели изобретения предлагается выбранный вибрирующий объект облучать с небольшого расстояния (десятки-сотни метров) радиолокационным сигналом вида
u1(t) = Um1cos(2πfot) = Um1cos(ωot),
где ωo= 2πfo - циклическая частота излучаемого сигнала;
Um1 - амплитудный множитель излучаемого сигнала.

Это позволяет, используя совмещенную РЛС, принять отразившийся от объекта сигнал вида [3]:
Uпр1(t) = Aпр1cos[2π(fo-Fд)t-ϕц], (1)
где Aпр1 - амплитудный коэффициент, учитывающий затухание радиоволн в пространстве, отражательную способность объекта, возможности усиления отраженного сигнала в РЛС;
Fл - доплеровская добавка к частоте, определяемая из выражения
Fд= 2foVr/c = 2Vro;
Vr - радиальная составляющая скорости объекта;
c - скорость света (распространения радиоволн);
λo - длина волны зондирующего сигнала;
ϕц - начальная фаза отраженного сигнала, которая определяется дальностью rо до исследуемого объекта и скачком начальной фазы при отражении от объекта ϕотр:
ϕц= 4πforo/c+ϕотр= 4πrooотр.
Подставив эти формулы в выражение (1), получим

где tз = 2rо/c - время задержки отраженного сигнала.

Учитывая факт вибрации (периодического приближения или удаления) исследуемого объекта, преобразуем (представим иначе) одно из слагаемых под знаком косинуса
4πtVro= 2ktVr= ZcosΩt,
где k = 2π/λo - волновое число;
Z - амплитудный множитель (глубина модуляции) процесса вибрации;
cosΩt - гармоническая функция низкочастотной составляющей вибрации;
Ω - циклическая частота вибраций.

При таком представлении выражение для принятого сигнала примет вид
Uпр1(t) = Aпр1cos[ωo(t-tз)-ZcosΩt-ϕотр]. (3)
Принятый сигнал Uпр1(t) следует демодулировать одним из известных в теории радиолокации методов, выделить огибающую данного сигнала, и излучаемый зондирующий сигнал промодулировать по закону, который соответствует модуляции принятого сигнала Uпр1(t).

Вследствие такого преобразования излучения новый излучаемый сигнал будет описываться выражением
u2(t) = Um2cos[ωo(t-tз)-ZcosΩt-ϕотр]. (4)
Принятый в результате отражения от объекта сигнал будет иметь вид

В формуле (5) один из аргументов косинуса можно преобразовать. Для этого необходимо учесть, что величина tз при малом удалении объекта будет существенно (на несколько порядков) меньше периода низкочастотного колебания объекта с частотой Ω Значит, данной величиной можно пренебречь. В итоге получаем следующее выражение
Uпр2(t) = Aпр2cos[ωo(t-2tз)-2ZcosΩt-2ϕотр]. (6)
Из выражения (6) видно, что глубина модуляции после соответствующего изменения зондирующего сигнала увеличилось в 2 раза. Если теперь изменить закон модуляции зондирования в соответствии с выражением (6), то принятый сигнал будет иметь глубину модуляции в 3 раза большую первоначальной:
Uпр3(t) = Aпр3cos[ωo(t-3tз)-3ZcosΩt-3ϕотр]. (7)
Повторяя описанные операции, можно непрерывно увеличивать глубину модуляции принятого сигнала. Это следует делать до тех пор, пока амплитуда выделенной огибающей при демодуляции отраженного сигнала не превысит заданного эталонного порогового уровня. При выполнении указанного условия выделенную огибающую подвергают спектральному анализу и выделяют в ней периодические составляющие вибраций объекта. Измерение частоты и амплитуды вибрационных составляющих позволяет сделать вывод о качестве и работоспособности исследуемого объекта. Для более тонкого и детального анализа вибрационных составляющих можно также предложить использовать при спектральном анализе цифровой метод: накопление в течение некоторого промежутка времени амплитудно-фазовой информации отраженного сигнала, в котором модуляционная составляющая превысила порог, а затем - проведение операции преобразования Фурье для получения спектральной информации в цифровом виде.

Как видно из описания предлагаемого способа измерения вибрационных параметров, он имеет явные преимущества перед ранее известными. Во-первых, за счет многократного увеличения глубины модуляции принятых сигналов повышается точность определения вибрационных параметров, так как вибрационные составляющие начинают более резко выделяться на фоне других. А, во-вторых, способ можно использовать для решения множества важных народнохозяйственных задач, перечисленных ранее.

Используемая литература
1. Патент США N 3803598. МКИ G 01 S 9/02. НКИ 345-5 SA. Опубл. 9.04.74 г. Журнал "Изобретения за рубежом" Выпуск 25. Техника испытаний и измерений. Москва. ЦНИИ ПИ. N 7. 1974. С. 99. (аналог).

2. Небабин В.Г., Сергеев В.В. Методы и техника радиолокационного распознавания. М.: Радио и связь. 1984. С. 36-37. Патент США N 3614779. МПК G 01 S 9/02. Опубл. 19.10.71 г. (прототип).

3. Теоретические основы радиолокации / Под ред. Ширмана Я.Д. Учебное пособие для вузов. М.: Советское радио. 1970. С. 353.

Похожие патенты RU2158006C1

название год авторы номер документа
РАДИОЛОКАЦИОННАЯ СТАНЦИЯ С ИНВЕРСНЫМ СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ И МНОГОЧАСТОТНЫМ ЗОНДИРУЮЩИМ СИГНАЛОМ 1999
  • Митрофанов Д.Г.
  • Силаев Н.В.
RU2152626C1
СПОСОБ ЗАЩИТЫ РАДИОЛОКАЦИОННОЙ СТАНЦИИ ОТ ПРОТИВОРАДИОЛОКАЦИОННОЙ РАКЕТЫ НА ОСНОВЕ ИСПОЛЬЗОВАНИЯ ПЕРЕИЗЛУЧАЮЩЕГО ЭКРАНА 2001
  • Успенский С.А.
  • Митрофанов Д.Г.
  • Пономарев А.Н.
RU2210089C2
СПОСОБ ОБНАРУЖЕНИЯ НИЗКОЛЕТЯЩИХ ЦЕЛЕЙ НА ФОНЕ ОТРАЖЕНИЙ ОТ МЕСТНЫХ ПРЕДМЕТОВ 2000
  • Ребров А.С.
  • Гумиров Р.З.
  • Немцов В.Е.
  • Аникина Е.А.
  • Пономарев Д.А.
RU2201602C2
УСТРОЙСТВО РАСПОЗНАВАНИЯ ВОЗДУШНЫХ ЦЕЛЕЙ ДВУХЧАСТОТНЫМ СПОСОБОМ 1999
  • Бондарев Л.А.
  • Жигунов П.А.
  • Васильченко О.В.
  • Гуреев А.К.
  • Чагрин А.С.
RU2144681C1
УСТРОЙСТВО СЕЛЕКЦИИ САМОНАВОДЯЩИХСЯ ПРОТИВОРАДИОЛОКАЦИОННЫХ РАКЕТ 1998
  • Митрофанов Д.Г.
  • Грищенков В.В.
  • Прохоркин А.Г.
  • Успенский С.А.
RU2155353C2
СПОСОБ ИЗМЕРЕНИЯ ПОПЕРЕЧНЫХ РАЗМЕРОВ РАДИОЛОКАЦИОННЫХ ОБЪЕКТОВ РЛС В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ 1999
  • Бондарев Л.А.
  • Васильченко О.В.
  • Гуреев А.К.
  • Чагрин А.С.
RU2150714C1
СПОСОБ ЗАЩИТЫ РЛС ОТ ПРОТИВОРАДИОЛОКАЦИОННЫХ РАКЕТ 1999
  • Успенский С.А.
  • Чухлеб Ф.С.
  • Друзин С.В.
  • Скоков А.Л.
  • Пономарев А.Н.
  • Пономарев Д.А.
  • Митрофанов Д.Г.
RU2153684C1
МНОГОЧАСТОТНАЯ РАДИОЛОКАЦИОННАЯ СТАНЦИЯ С ИНВЕРСНЫМ СИНТЕЗИРОВАНИЕМ АПЕРТУРЫ И ДВУХУРОВНЕВЫМ РАСПОЗНАВАНИЕМ ЦЕЛЕЙ 2007
  • Сафонов Алексей Викторович
  • Митрофанов Дмитрий Геннадьевич
RU2358288C1
РАДИОЛОКАЦИОННОЕ РАСПОЗНАЮЩЕЕ УСТРОЙСТВО 1996
  • Митрофанов Д.Г.
  • Максаков И.М.
  • Печенев А.А.
RU2095824C1
РАДИОЛОКАЦИОННОЕ УСТРОЙСТВО РАСПОЗНАВАНИЯ СОСТАВА ЦЕЛИ 1996
  • Ермоленко В.П.
  • Митрофанов Д.Г.
RU2095827C1

Реферат патента 2000 года СПОСОБ ИЗМЕРЕНИЯ ВИБРАЦИОННЫХ ПАРАМЕТРОВ МАЛОУДАЛЕННЫХ ОБЪЕКТОВ

Изобретение относится к радиолокационным методам и предназначено для определения параметров близко расположенных вибрирующих объектов по гармоническим составляющим отраженного сигнала. Способ заключается в излучении в направлении исследуемого объекта модулированного зондирующего сигнала, приеме отраженного объектом сигнала, его детектировании, выделении модуляционной составляющей, на основе анализа которой определяются вибрационные параметры объекта. При этом зондирующий сигнал модулируют по закону модуляционной составляющей принятого отраженного сигнала до тех пор, пока амплитуда выделенной модуляционной составляющей при сравнении ее с данным эталонным пороговым уровнем не превысит его. После этого осуществляют спектральный анализ модуляционной составляющей для определения ее характеристик, по которым оценивают вибрационные параметры объекта. Достигаемым техническим результатом является повышение точности определения вибрационных параметров объектов, находящихся на небольшом расстоянии от РЛС.

Формула изобретения RU 2 158 006 C1

Способ измерения вибрационных параметров малоудаленных объектов, заключающийся в излучении в направлении исследуемого объекта модулированного зондирующего сигнала, приеме отраженного объектом сигнала, его детектировании, выделении модуляционной составляющей, на основе анализа которой определяются вибрационные параметры объекта, отличающийся тем, что зондирующий сигнал модулируют по закону модуляционной составляющей принятого отраженного сигнала до тех пор, пока амплитуда выделенной модуляционной составляющей при сравнении ее с заданным эталонным пороговым уровнем не превысит его, после чего анализ модуляции принятого сигнала осуществляют спектральным образом для определения частот модуляционных составляющих, характеризующих вибрационные параметры объекта.

Документы, цитированные в отчете о поиске Патент 2000 года RU2158006C1

НЕБАБИН В.Г., СЕРГЕЕВ В.В
Методы и техника радиолокационного распознавания
- М.: Радио и связь, 1984, с.36, 37
US 4568938, 04.02.1986
US 5058459 A, 14.01.1992
US 4306236, 15.12.1981
Угольный комбайн 1973
  • Фролов Анатолий Григорьевич
  • Берман Валерьян Михайлович
  • Эйдерман Борис Александрович
  • Кречнев Эдуард Германович
  • Лобжанидзе Леван Петрович
  • Геллер Абрам Минаевич
  • Крутик Аркадий Владимирович
SU474612A1

RU 2 158 006 C1

Авторы

Митрофанов Д.Г.

Пономарев Д.А.

Митрофанов О.Д.

Даты

2000-10-20Публикация

1999-11-26Подача