Изобретение относится к области атомной техники, в частности к очистке воздушных потоков, в т.ч. вентсистем АЭС, содержащих радиоактивный йод.
Известно, что в воздушных выбросах из атомных реакторов радиоактивный йод содержится в виде аэрозолей и газообразных соединений: паров молекулярного йода (I2), йодоводорода (HI), йодатов, и различных органических соединений, в частности йодистого метила (СН3I), а также образующейся во влажной среде йодоводородной кислоты (HIO).
В современной технике для очистки газов от радиоактивного йода используют различные фильтрующие и сорбируюшие материалы, способные улавливать аэродисперсные и газообразные продукты радиоактивного йода.
Известно, что очистку воздушных выбросов АЭС от радиоактивного йода осуществляют с помощью йодных фильтров, в которых в качестве поглотителей используют гранулированный активированный уголь (марки СКТ-3, СКТ-6), а также сорбционно-фильтрующие материалы, содержащие сорбенты, импрегнированные йодистым калием, вторичными и третичными аминами или азотно-кислым серебром.
[1. Нахутин И.Е., Смирнова И.М., Лаушкина Г.А., Лошаков Г.А. Адсорбция паров радиоактивного йода из воздуха. - Атомная энергия, 1969, т.26, вып.4, с.390-391.
2. Стыро Б.И., Недвецкайте Т.Н., Филистович В.И. Изотопы йода и радиационная безопасность. - СПб.: Гидрометеоиздат, 1992, 255 с.
3. Соболев В.А., Толстых В.Д. Некоторые результаты исследований изотопов йода в различных физико-химических формах. - В Сб.: Радиационная безопасность и защита АЭС, вып.9, М., Энергоатомиздат, 1985, с.273-278.
4. Кузнецов Ю.В., Суходолов Г.М., Елизарова А.Н., Чватов В.Н. К вопросу о химических формах йода в отходах АЭС. - Радиохимия, 1981, №6, 923-926.
5. Нахутин И.Е., Очкин Д.В., Смирнова Н.М. и др. Газоочистка и контроль газовых выбросов АЭС. - М.: Энергоатомиздат, 1983, 24 с.
6. Борисов Н.Б. Исследование газообразных фракций радиоактивного йода. - Атомная энергия, т.97, вып.5, ноябрь 2004. Стр.349-355].
В частности, 1) известны сорбционно-фильтрующая лента СФЛ-2И-50 и аналитические фильтры АФАС-И для анализа радиойода, состоящие из фильтрующего материала ФП и мелкоизмельченного угля ОУ-А, импрегнированного 25% азотно-кислым серебром [7. Борисов Н.Б., Борисова Л.И., Старостина И.А., Петрянов И.В. Аналитическая лента СФЛ-2И-50 и фильтры АФАС-И для определения содержания радиоактивного йода в газовых средах. - Гигиена и санитария №9, 64, 1977]; 2) известен сорбционно-фильтрующий материал ФПУА-70-7,5 для очистки воздуха и газов от радиойода 8. ТУ 2282-251-2100232-97, также состоящий из фильтрующего материала ФП и высокодисперсного порошка, импрегнированного азотно-кислым серебром; 3) известен многослойный сорбционно-фильтрующий материал для очистки воздуха от радиойода, в котором в качестве углеродосодержащего материала слоев использована карбонизированная углеродная ткань с поверхностной плотностью 230-700 г/м2 и диаметром волокон 2-10 мкм, причем лобовой слой дополнительно импрегнирован 1-5% йодистым калием и/или амином [9. Патент РФ №2161338].
Недостатком этих материалов является небольшая эффективность улавливания летучих соединений радиойода и ограниченное время защитного действия.
Ближайшим аналогом по совокупности признаков с заявляемым техническим решением является сорбционно-фильтрующий трехслойный волокнистый материал, средний слой которого выполнен из ультратонких перхлорвиниловых волокон, содержащих частицы активированного угля, обработанного азотно-кислым серебром, или активированных угольных волокон, обработанных азотно-кислым серебром, внешние слои выполнены из смеси перхлорвиниловых проклеенных между собой ультратонких волокон с диаметром 5-9 мкм и диаметром 0,5-1,2 мкм, предназначенный для улавливания радиойода в целях анализа, очистки воздуха и индивидуальной защиты [10. Патент РФ №2188695].
Недостатком прототипа является недостаточная эффективность улавливания трудносорбируемых газообразных фракций радиойода, особенно (HIO), при повышенной влажности (около и более 90% относит. влажности).
Технической задачей изобретения является повышение степени (эффективности) очистки воздуха и технологических газов от летучих соединений радиойода сорбционно-фильтрующими материалами.
Поставленная задача решается путем предварительной обработки воздуха, содержащего радиойод и его трудносорбируемые производные, посредством смешения поступающего потока с газовыми реагентами, например аммиаком, сероводородом, парами диэтилентриамина, взятых в концентрациях, начиная с 0,1 г/м3 и до 30 г/м3 (и выше для разных соединений), сопровождающейся ионизацией газового комплекса перед фильтром, снаряженным сорбционно-фильтрующим материалом.
Сущность изобретения состоит в том, что под действием ионизации происходит разрушение трудносорбируемых соединений йода, с протеканием химического взаимодействия разрушенных соединений йода с аммиаком с образованием нелетучего йодида аммония (NH4I). В итоге происходит преобразование газообразного радиойода и его соединений в аэрозольное состояние, которое улавливается применяемыми для этих целей (промышленными) сорбционно-фильтрующими материалами с более высокой степенью комплексной очистки воздушного газового потока от радионуклидов, независимо от их физического состояния и химического состава. Ионизация газовой смеси создается различными методами: ультрафиолетовым излучением, электродуговым разрядником, коронным разрядом и их наложением, с подобранными параметрами: расстоянием между электродами, силой тока, потенциалом ионизации. Эти параметры, в частности потенциал ионизации в 3-25 вольт, подбирались исходя из физико-химических свойств реагентов. Кроме того, под действием ионизации трудносорбируемые формы радиоактивного йода частично переходят в легкосорбируемые.
Таким образом, предлагаемый способ позволяет существующим фильтрующим материалам значительно повысить эффективность улавливания радиоактивного йода, в частности его трудносорбируемых фракций, увеличивает их производительность и срок службы, а также снижает влияние влажности на степень очистки. Необходимо особо отметить, что фильтрующие возможности применяемых СФМ по отношению к газообразному молекулярному радиойоду и его легкосорбируемым производным остаются неизменными.
Предлагаемый способ очистки газов от радиойода подтверждается экспериментальными данными, полученными в нижеприведенных примерах.
Пример 1. Действие ионизации на преобразование трудносорбируемой фракции йода-131 и улавливание йода-131 сорбционно-фильтрующей лентой СФЛ-2И-50.
Источником трудносорбируемой фракции йода-131 служил лабораторный генератор газообразного йода-131 во влажной среде после отделения из потока аэрозолей и молекулярной фракции при концентрации 0,12-0,84 нКи/л (1 нКи/л = 37 Бк/л). Эффективность улавливания радиойода определяли с помощью пакета сорбирующих фильтров АФАС-И, установленных до и после исследуемой сорбционно-фильтрующей ленты СФЛ-2И-50 [11. Борисов Н.Б. Исследование и разработка сорбционно-фильтрующих материалов для улавливания и анализа радиоактивных изотопов йода. - Научно-информ. журнал АНРИ. 2000, вып.4 (23), стр.4-13; 2002, вып.1 (28), стр.13-22; 2003, вып.1 (32), стр.55-64]. Ионизацию газового потока без добавления аммиака создавали коронным разрядом и/или электродуговым разрядником при расстоянии между электродами 5 мм и силе тока 14-22 мА, и потенциалом ионизации 3-25 вольт. Исследования проводили при скорости потока 10 см/с, продолжительности 2 часа и комнатной температуре, при этом имел место разогрев системы до 50°С. Результаты исследования представлены в табл.1.
Из приведенных результатов видно, что эффективность улавливания трудносорбируемой фракции йода-131 сорбционно-фильтрующей лентой СФЛ-2И-50 увеличилась на 5-8% и достигла 99%.
Пример 2. Действие ионизации на преобразование и улавливание йода-131 сорбционно-фильтрующей лентой СФЛ-2И-50 в производственных условиях.
Источником йода-131 служили технологические выбросы из реактора и рабочих боксов Филиала НИФХИ им. Карпова (г.Обнинск). Как и в примере 1 ионизация создавалась в потоке воздуха перед пробоотборником, снаряженным сорбционно-фильтрующей лентой СФЛ-2И-50 и пакетом, содержащим аэрозольные фильтры АФА-РМП и сорбирующие фильтры АФАС-И. Действие ионизации оценивалось по количеству аэрозолей йода-131, улавливаемых фильтром АФА-РМП, а эффективности улавливания газообразных соединений йода-131 - лентой СФЛ-2И-50. Условия и результаты экспериментов представлены в табл.2.
0,54
0,33
5
5
6
17,5
0,2
0,1
10,4
17,5
87,7
88,4
99,2
99,1
0,03
10
7
0,08
15,7
78,2
94,2
6,6
3,6
5
5
5
16
0,5
0,15
5,5
5,5
99,1
98,3
99,9
99,9
Из приведенных данных видно, что при ионизации воздушного потока с выбросами радиойода доля аэрозолей радиойода в сбросе увеличивается в десятки и сотни раз, и при этом эффективность ленты СФЛ-2И-50 увеличивается на 10-20% и достигает 99,9%.
Пример 3. Действие ионизации и добавление аммиака в газовую среду, содержащую трудносорбируемую фракцию йода-131.
Эксперименты проводили без ионизации и при различных типах ионизации газового потока (ультрафиолетовым облучением, электродуговым разрядником, коронным разрядом и при их сочетании), а также при добавлении в смесь аммиака. Температура - 22°С. Концентрация аммиака - 0,10-0,12 г/м3. Время воздействия ионизации - несколько секунд (от 2 до 10 с).
Оценку эффекта проводили по изменению доли аэрозолей после преобразования газообразного радиойода. Анализ фракционного состава йода-131 осуществлялся посредством улавливания радиойода в пакете аналитических фильтров, состоящих из последовательно расположенных аэрозольных фильтров АФА-РМП и сорбирующих фильтров АФАС-И. По количеству уловленного радиойода на фильтрах АФА-РМП определяли процент аэрозольной фракции, а по количеству и распределению уловленного радиойода в фильтрах АФАС-И измеряли легкосорбируемую и трудносорбируемую фракции и их количество [11].
Данные и результаты экспериментов приведены в таблице 3.
Из представленных результатов видно, что доля аэрозолей при смешении трудносорбируемой фракции йода-131 с аммиаком без ионизации увеличивается в 2,2 раза, при ионизации: от в 24,2 раза (ультрафиолетом) до в 33,9 раза (электродуговым разрядником), коронный разряд - в 30,6 раза.
Пример 4. Совместное действие ионизации и аммиака на преобразование газообразного йода-131 в аэрозольное состояние.
Эксперименты проводили с трудносорбируемой фракцией йода-131 при добавлении аммиака и ионизации газового потока электродуговым разрядником. Оценку эффекта преобразования газообразного радиойода вели по количеству образовавшегося аэрозоля, определяемого с помощью пакета фильтров, составленного из аэрозольных фильтров АФА-РМП и сорбируюших фильтров АФАС-И. Кроме того, по распределению уловленного йода-131 в сорбирующих фильтрах измеряли содержание и фракционный состав газообразного йода-131 (легкосорбируемую и трудносорбируемую фракции) [11]. Концентрация аммиака изменялась в пределах от 0,10 до 30 мг/м3. Электродуговой разрядник работал при силе тока 14-22 мА (потенциалом ионизации 3-25 вольт). Расстояние между электродами было 5 мм.
Результаты экспериментов представлены в табл.4.
Из представленных результатов видно, что при ионизации воздушной смеси с аммиаком происходило преобразование трудносорбируемой фракции йода-131 в аэрозольное состояние и хорошо сорбируемую фракцию, для которых обеспечивается высокоэффективное улавливание существующими сорбционно-фильтрующими материалами. Аналогичные результаты по эффективности улавливания в воздухе радиойода путем преобразования в аэрозоли и легкосорбируемые фракции получали с такими химическими реагентами как газообразный сероводород и пары диэтилентриамина в концентрациях до 50 г/м.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ ЙОДА | 2009 |
|
RU2414280C1 |
КЕРАМИЧЕСКИЙ ВЫСОКОПОРИСТЫЙ БЛОЧНО-ЯЧЕИСТЫЙ СОРБЕНТ ДЛЯ УЛАВЛИВАНИЯ РАДИОАКТИВНОГО ЙОДА И ЕГО СОЕДИНЕНИЙ ИЗ ГАЗОВОЙ ФАЗЫ | 2014 |
|
RU2576762C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЦИОННО-ФИЛЬТРУЮЩЕГО МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2114681C1 |
Газоочистной аппарат для улавливания летучих продуктов деления (варианты) | 2022 |
|
RU2792406C1 |
СОРБЦИОННО-ФИЛЬТРУЮЩАЯ ЗАГРУЗКА ДЛЯ ОЧИСТКИ ВОЗДУХА ОТ РАДИОАКТИВНОГО ЙОДА | 1999 |
|
RU2161338C2 |
СПОСОБ УЛАВЛИВАНИЯ ЛЕТУЧИХ ФОРМ РАДИОАКТИВНОГО ЙОДА И СОРБЦИОННЫЙ МАТЕРИАЛ ДЛЯ УЛАВЛИВАНИЯ ЛЕТУЧИХ ФОРМ РАДИОАКТИВНОГО ЙОДА | 1999 |
|
RU2174722C2 |
ФИЛЬТР ДЛЯ ОЧИСТКИ ВОЗДУХА ОТ РАДИОАКТИВНОГО ЙОДА | 2003 |
|
RU2262758C2 |
Способ комплексного контроля радионуклидов в выбросах ядерных энергетических установок | 2018 |
|
RU2687842C1 |
Установка для очистки газовых потоков от летучих соединений цезия и йода, образующихся в процессе высокотемпературной обработки отработавшего ядерного топлива | 2023 |
|
RU2808719C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ УДАЛЕНИЯ РАДИОНУКЛИДОВ ЙОДА И/ИЛИ ЕГО ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ | 2009 |
|
RU2414294C1 |
Изобретение относится к области экологии атомной энергетики, в частности к очистке воздушных потоков, в т.ч. вентсистем АЭС, содержащих радиоактивный йод. Способ очистки воздуха от газообразных соединений радиоактивного йода заключается в их улавливании сорбционно-фильтрующими материалами. Содержащий радиойод воздушный поток перед сорбционно-фильтрующими материалами предварительно смешивают с аммиаком и проводят ионизацию газовой смеси. Целесообразно использовать аммиак при концентрации в пределах 0,1-30,0 г/м3. Ионизацию газовой смеси предпочтительно создавать ультрафиолетовым излучением и/или электродуговым разрядником и/или коронным разрядом с потенциалом ионизации 3-25 вольт. Изобретение позволяет повысить степень (эффективности) очистки существующими сорбционно-фильтрующими материалами воздуха и технологических газов от трудносорбируемых газообразных фракций радиойода, особенно (HIO), при повышенной влажности. 2 з.п. ф-лы, 4 табл.
СПОСОБ УЛАВЛИВАНИЯ РАДИОНУКЛИДОВ ИЗ ГАЗОВОЙ ФАЗЫ | 1993 |
|
RU2084027C1 |
СОРБЦИОННО-ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, ФИЛЬТР ДЛЯ ОЧИСТКИ ГАЗОВ, АНАЛИТИЧЕСКАЯ СОРБЦИОННО-ФИЛЬТРУЮЩАЯ ЛЕНТА И ФИЛЬТРУЮЩАЯ ПОЛУМАСКА ДЛЯ ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ НА ЕГО ОСНОВЕ | 2000 |
|
RU2188695C2 |
JP 4019600 А, 23.01.1992 | |||
US 5075084 А, 24.12.1991 | |||
МАГНИТНАЯ ПЕРИОДИЧЕСКАЯ ФОКУСИРУЮЩАЯ СИСТЕМА | 0 |
|
SU270096A1 |
Авторы
Даты
2008-12-27—Публикация
2006-05-25—Подача