СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2009 года по МПК C22C21/10 

Описание патента на изобретение RU2343219C1

Предлагаемое изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, для изготовления деформированных полуфабрикатов, используемых в качестве конструкционного материала в летательных аппаратах.

Известен сплав на основе системы Al-Zn-Mg марки АЦМ, явившийся основой для преобладающего большинства отечественных сплавов этой системы и имеющий следующий химический состав, мас.%:

Цинк4,2-4,8Магний1,6-2,1Марганец0,4-0,8Цирконий0,15-0,22Алюминий- остальное

(Елагин В.И., Захаров В.В., Дриц A.M. Структура и свойства сплавов Al-Zn-Mg. Москва, «Металлургия», 1982 г., с.10).

Сплав АЦМ обладает уникальным комплексом механических свойств, прекрасно сваривается, но не обладает сверхпластическими свойствами и склонен к коррозии под напряжением.

Известен алюминиевый сплав системы алюминий-цинк-магний следующего состава, мас.%:

Цинк4,5-5,6Магний1,6-2,1Марганец0,2-0,8Скандий0,03-0,09Цирконий0,05-0,12Медь0,1-0,3Титан0,01-0,07Молибден0,01-0,07Церий0,001-0,01Алюминий- остальное

(Патент РФ №2280092, М. кл. С22С 21/10, 2006), прототип.

Недостатком этого сплава являются низкие сверхпластические свойства и недостаточное сопротивление коррозии под напряжением. Предлагается сплав на основе алюминия состава, мас.%:

Цинк4,6-5,4Магний1,6-2,1Медь0,31-0,50Скандий0,18-0,30Цирконий0,05-0,12Марганец0,15-0,35Титан0,01-0,06Молибден0,01-0,06Железо0,05-0,15Кремний0,01-0,10Алюминий- остальное

При этом отношение содержания цинка к содержанию магния составляет 2,5-2,9, а отношение содержания магния к содержанию меди - 4,4-4,8.

Предлагаемый сплав отличается от прототипа тем, что он дополнительно содержит железо, кремний при следующем соотношении компонентов, мас.%:

Цинк4,6-5,4Магний1,6-2,1Медь0,31-0,50Скандий0,18-0,30Цирконий0,05-0,12Марганец0,15-0,35Титан0,01-0,06Молибден0,01-0,06Железо0,05-0,15Кремний0,01-0,10Алюминий- остальное

При этом отношение содержания цинка к содержанию магния составляет 2,5-2,9, а отношение содержания магния к содержанию меди - 4,4-4,8.

Технический результат - повышение сверхпластических свойств и увеличение сопротивления коррозии под напряжением, и как следствие, расширение сортамента полуфабрикатов и увеличение срока службы изделий.

Предлагаемый сплав позволяет получать деформированные полуфабрикаты, и в частности листы со стабильной нерекристаллизованной структурой с равномерным распределением числа наночастиц Al3 (Sc, Zr, Ti, Мо), сдерживающих рекристаллизацию и рост зерен, и с ограниченным числом крупных (микронных) частиц фазы Al (Mn, Fe, Si), инициирующих рекристаллизацию и рост зерен. Такая структура обеспечивает высокие сверхпластические свойства: низкое сопротивление деформации, высокое относительное удлинение и высокую чувствительность к скорости деформации.

Кроме того, предлагаемый сплав обеспечивает близкие электрохимические характеристики границ и тела зерен, обусловливая тем самым заметный рост сопротивления коррозии под напряжением.

Предлагаемый сплав обладает высокой устойчивостью пересыщенного твердого раствора основных легирующих компонентов цинка, магния и меди в алюминии, обеспечивая высокие механические свойства при медленном охлаждении с температуры закалки, например, при охлаждении на спокойном воздухе листов и позволяя закаливать массивные детали толщиной до 350 мм в воде.

Пример. Методом непрерывного литья были отлиты слитки диаметром 370 мм двух сплавов: известного среднего химического состава и предлагаемого среднего химического состава. Химический состав сплавов представлен в таблице 1.

Таблица 1СплавZnMgCuScZrMnTiMoFeSiAlИзвестный5,11,90,210,070,090,520,030,020,260,13Ост.Предлагаемый5,01,90,40,220,100,210,020,030,090,04Ост.

Слитки гомогенизировали, резали и обтачивали на заготовки, которые прессовали на полосу сечением 60х200 мм. Часть полос оставляли для исследования механических свойств, сопротивления коррозии под напряжением, а часть - прокатывали в листы толщиной 2 и 1 мм, которые использовали для исследования сварных соединений, сверхпластических и механических свойств.

Прессованные полосы из известного и предлагаемого сплавов закаливали в воде комнатной температуры с температуры 450°С и искусственно старили по режиму 100°С, 20 ч +160°С, 10 ч.

Из прессованных полос в коротком поперечном (высотном) направлении вырезали образцы для испытания на коррозию под напряжением при постоянно действующем напряжении на установке «Сигнал».

В качестве критерия, характеризующего склонность сплавов к коррозии под напряжением, была взята величина критического напряжения σкр, представляющая собой максимальное напряжение, которое выдерживают испытываемые образцы без разрушения в конкретных условиях испытаний. Испытания проводили в интервале напряжений 75-250 МПа с шагом в 25 МПа.

Результаты испытаний показали, что критическое напряжение σкр для высотного направления прессованной полосы известного сплава составило 100 МПа, а предлагаемого сплава - 150 МПа. Сопротивление коррозии под напряжением предлагаемого сплава в 1,5 раза выше.

Исследование механических свойств прессованных полос известного и предлагаемого сплава показало, что исследованные свойства близки при небольшом преимуществе предлагаемого сплава (таблица 2),

Таблица 2СплавНаправлениеσв, МПаσ0,2, МПаδ, %K1c, МПа√мМЦУ, кциклσкр, МПаИзвестныйпродольное4704301348210-поперечное4404201237--высотное44041011-100Предлагаемыйпродольное4804401150240-поперечное4504201238--высотное44042010--150Примечание: K - вязкость разрушения в условиях плоской деформации; МЦУ - количество килоциклов до разрушения образцов в условиях малоцикловой усталости f=10 герц, ασ=2,6, σmax=160 МПа; σкр - критическое напряжение, характеризующее сопротивление сплава коррозии под напряжением

Более высоким сопротивлением коррозии под напряжением обладает не только основной материал предлагаемого сплава, но и его сварные соединения.

Закаленные листы толщиной 2 мм были сварены аргонно-дуговой сваркой с использованием присадочной проволоки из сплава 1571 и после 1-го месяца вылеживания были испытаны на коррозию под напряжением для определения величины σкр, характеризующей сопротивление сплава коррозии под напряжением, а также были определены характеристики механических свойств - временное сопротивление σв, ударная вязкость KCU и угол загиба ϕ. Результаты испытаний представлены в таблице 3.

Таблица 3Сплавσвсв, МПаϕ, градKCU, кДж/см2σкрсв, МПаИзвестный4159025175Предлагаемый44710035225

Механические свойства сварных соединений, а также σкр, характеризующее сопротивление сварных соединений коррозии под напряжением, у предлагаемого сплава выше, чем у известного.

Таким образом, сопротивление коррозии под напряжением основного материала и сварных соединений предлагаемого сплава превосходит соответствующую характеристику известного сплава.

Из листов толщиной 1 мм из известного и предлагаемого сплавов в поперечном направлении были взяты образцы для испытания на сверхпластичность.

Испытания проводили при температуре 470°С, скорость деформации ε при этом составила 5·10-2 сек-1. Результаты испытаний представлены в таблице 4.

Таблица 4Сплавσ, МПаδ, %МИзвестный18-19200-3000,23Предлагаемый12-14600-8000,40-0,45

Из таблицы 4 видно, что известный сплав обладает низкими сверхпластическими свойствами (мало относительное удлинение δ, высоко сопротивление деформации σ и мал коэффициент скоростной чуствительности m). Предлагаемый сплав характеризуется высокими сверхпластическими свойствами.

Сочетание сверхпластических свойств и высокой устойчивости твердого раствора делает предлагаемый сплав уникальным. Из листов толщиной 1 мм предлагаемого сплава методом пневмоформовки при 470°С в условиях сверхпластической деформации были получены детали сложной формы, которые при охлаждении с температуры пневмоформовки на спокойном воздухе самозакаливались. После искусственного старения полученные детали имели очень высокие прочностные характеристики при хорошей пластичности: σв=510 МПа, σ0,2=470 МПа, δ=10%.

Высокая устойчивость твердого раствора обеспечивает предлагаемому сплаву повышенную прокаливаемость. Из сплава могут изготавливаться и насквозь прокаливаться деформированные полуфабрикаты толщиной до 350 мм, сохраняя высокие прочностные и пластические свойства, в том числе вязкость разрушения в центре детали. В таблице 5 приведены свойства массивной штамповки из предлагаемого сплава массой около 300 кг после закалки в воде и искусственного старения, полученной в промышленных условиях.

Таблица 5СплавНаправлениеσв, МПаσ0,2, МПаδ, %KCU, кДж/см2K1c, МПа√мМЦУ, кциклσкр, МПаПредлагаемыйПродольное (по волокну)480415172042140-Поперечное (поперек волокна)475405161841>175

Из таблицы 5 видно, что предлагаемый сплав в массивных сечениях обладает уникальным сочетанием служебных свойств: высокими прочностью, пластичностью, вязкостью разрушения, сопротивлением усталостным нагрузкам при минимальной анизотропии свойств.

Прессованные, кованые и катаные полуфабрикаты из предлагаемого сплава являются хорошим конструкционным материалом для летательных аппаратов. В таблице 6 представлены механические свойства листов из предлагаемого сплава после закалки и искусственного старения.

Таблица 6СплавНаправлениеσв, МПаσ0,2, МПаδ, %Кc, МПа√м, W=400 ммМЦУ, кциклСРТУ Мм/кцикл при ΔК=31,3 МПа√мРСК баллПредлагаемыйПродольное5204901116024032-3Поперечное52049011----Примечание: Кс - вязкость разрушения в условиях плоского напряженного состояния; РСК - склонность к расслаивающей коррозии по 10-ти балльной шкале. См. примечание к табл.2.

Из таблицы 6 видно, что листы предлагаемого коррозионно-стойкого свариваемого сплава по комплексу механических, ресурсных, коррозионных свойств превосходят обшивочные листы из лучших современных авиационных материалов типа 1163Т, которые не свариваются и характеризуются низкими коррозионными свойствами.

Таким образом, предлагаемый сплав обладает высокими сверхпластическими свойствами, коррозионно-стоек, из него можно изготавливать все виды деформируемых полуфабрикатов, которые являются прекрасным конструкционным материалом летательных аппаратов, обеспечивая их надежность и длительный срок эксплуатации.

Похожие патенты RU2343219C1

название год авторы номер документа
СВАРИВАЕМЫЙ АЛЮМИНИЕВЫЙ СПЛАВ ДЛЯ БРОНИ 2013
  • Каширин Вячеслав Федорович
RU2536120C1
МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ 2005
  • Белов Николай Александрович
  • Золоторевский Вадим Семенович
  • Чеверикин Владимир Викторович
RU2288965C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2020
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Легких Антон Николаевич
RU2771396C1
МАТЕРИАЛ НА ОСНОВЕ АЛЮМИНИЯ 2003
  • Белов Н.А.
  • Золоторевский В.С.
  • Чеверикин В.В.
RU2245388C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2004
  • Попов Валерий Иванович
RU2280705C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ СВАРИВАЕМОЙ БРОНИ 2007
  • Каширин Вячеслав Федорович
  • Хромов Александр Петрович
RU2349664C1
Сплав системы Al-Mg с гетерогенной структурой для высокоскоростной сверхпластической формовки 2021
  • Михайловская Анастасия Владимировна
  • Кищик Анна Алексеевна
  • Кищик Михаил Сергеевич
  • Котов Антон Дмитриевич
RU2772479C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2022
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Иванова Анна Олеговна
  • Никитина Маргарита Александровна
RU2800435C1
СЛОИСТАЯ ПЛИТА НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ ПРОТИВОПУЛЬНОЙ СВАРНОЙ БРОНИ 2008
  • Григорян Валерий Арменакович
  • Каширин Вячеслав Федорович
  • Егоров Александр Иванович
  • Дриц Александр Михайлович
  • Соседков Сергей Михайлович
  • Зубков Виктор Андреевич
  • Шумилкин Аркадий Александрович
RU2371660C1
СЛОИСТАЯ БРОНЕВАЯ ПЛИТА НА ОСНОВЕ АЛЮМИНИЕВЫХ СПЛАВОВ (ВАРИАНТЫ) 2010
  • Каширин Вячеслав Федорович
RU2447392C2

Реферат патента 2009 года СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к металлургии легких сплавов на основе алюминия для изготовления деформируемых полуфабрикатов, используемых в качестве конструкционного материала в летательных аппаратах. Сплав содержит следующие компоненты, мас.%: цинк 4,6-5,4, магний 1,6-2,1, медь 0,31-0,50, скандий 0,18-0,30, цирконий 0,05-0,12, марганец 0,15-0,35, титан 0,01-0,06, молибден 0,01-0,06, железо 0,05-0,15, кремний 0,01-0,10, алюминий - остальное. Получают сплав, обладающий повышенной сверхпластичностью и коррозионной стойкостью. 6 табл.

Формула изобретения RU 2 343 219 C1

Сплав на основе алюминия, включающий цинк, магний, медь, скандий, цирконий, марганец, титан, молибден, отличающийся тем, что он дополнительно содержит железо, кремний при следующем соотношении компонентов, мас.%:

цинк4,6-5,4магний1,6-2,1медь0,31-0,50скандий0,18-0,30цирконий0,05-0,12марганец0,15-0,35титан0,01-0,06молибден0,01-0,06железо0,05-0,15кремний0,01-0,10алюминийостальное,

при этом отношение содержания цинка к содержанию магния составляет 2,5-2,9, а отношение содержания магния к содержанию меди - 4,4-4,8.

Документы, цитированные в отчете о поиске Патент 2009 года RU2343219C1

СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2004
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Ростова Татьяна Дмитриевна
  • Фисенко Ирина Антонасовна
  • Добаткина Татьяна Владимировна
RU2280092C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2005
  • Фридляндер Иосиф Наумович
  • Каблов Евгений Николаевич
  • Базурина Елена Яковлевна
  • Колобнев Николай Иванович
  • Каримова Светлана Алексеевна
  • Кузьмина Светлана Петровна
RU2293783C1
СПОСОБ ПНЕВМАТИЧЕСКОГО РАЗДЕЛЕНИЯ ВАТКИ 0
SU294516A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
Танцующая на мембране кукла 1959
  • Франгулов И.Т.
SU130381A1
Крыша здания с внутренним водостоком 1975
  • Тимофеенко Леонид Петрович
  • Плотинский Изяслав Шулимович
  • Иванов Олег Юрьевич
  • Гармаш Александр Иванович
  • Горохов Игорь Семенович
SU574511A1

RU 2 343 219 C1

Авторы

Елагин Виктор Игнатович

Захаров Валерий Владимирович

Ростова Татьяна Дмитриевна

Фисенко Ирина Антонасовна

Кириллова Лидия Петровна

Даты

2009-01-10Публикация

2007-05-10Подача